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Abstract—Accurate and computationally efficient modeling of
ocean currents is important for understanding and monitoring
the dispersion of marine pollution. Passive floating Lagrangian
drifters, equipped with GPS, are a low-cost approach to tracking
surface flow. However, assimilating drifter observations into com-
prehensive ocean models remains challenging, and these models
are often too computationally intensive for real-time or opera-
tional use. In this work, we introduce a novel Lagrangian data
assimilation method that leverages machine learning techniques
to enable computationally efficient ocean flow modeling. We first
train an autoencoder using existing snapshots of the flow field to
create a reduced-order model, which extracts low-dimensional
representations of the high-dimensional data. We then apply
Bayesian optimization to minimize a cost function, defined in
the low-dimensional latent space, that measures the discrepancy
between observed trajectories and model-generated trajectories.
Our approach is demonstrated to efficiently reconstruct regional
ocean flow from sparse drifter data, with results obtained in
minutes. The method can be used to identify the minimum
number of drifters needed for accurate flow modeling and to
determine optimal drifter launch locations.

Index Terms—ocean flow; drifter trajectories; data assimila-
tion; reduced-order modeling; machine learning; autoencoder;
convolutional neural network; Bayesian optimization

Computationally efficient modeling of ocean flow is relevant
for many applications (e.g., aquaculture, search and rescue,
offshore platforms, mitigating pollution dispersion, shipping).
For example, knowledge of ocean flow can help track the
dispersion of wastewater from the Deer Island Wastewater
Treatment Plant in the Massachusetts Bay. However, accu-
rately modeling ocean flow in real time is challenging because
it is governed by complex, high-dimensional, and non-linear
equations [1]. These equations are highly sensitive to initial,
boundary, and forcing conditions and exhibit features across a
wide range of spatial and temporal scales. Standard numerical
solvers, while physically detailed, are often computationally
prohibitive for real-time operational use.

Ocean flow can be observed using a variety of methods,
including satellite altimetry, acoustic Doppler current profil-
ers (ADCPs), moored instruments, and Lagrangian drifters.
Among these, Lagrangian drifters offer the most cost-effective
means of capturing near-surface circulation over large spatial
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and temporal scales. However, integrating these Lagrangian
observations into models is challenging because drifter data are
sparse, indirect, and influenced by chaotic advection. Ocean
models are usually formulated in an Eulerian framework,
complicating the assimilation of Lagrangian observations. Ad-
dressing these challenges requires advanced Lagrangian data
assimilation techniques, which aim to optimally combine ob-
servations with models to improve predictions [2]. This paper
presents a novel method for real-time, computationally effi-
cient reconstruction of ocean flow from observed Lagrangian
trajectories, making accurate predictions more feasible for
operational applications.

A. Datasets and Application

We are motivated by a dataset of measurements of La-
grangian trajectories from Microstar drifters collected by the
MIT Sea Grant office (Figure 2). Microstar drifters are low-
cost and designed to track currents at a depth of 1 meter below
the ocean’s surface. The Student Drifters educational program,
run by James Manning, offers an additional dataset of drifter
trajectories dating back to 1988, including observations from
both sail-equipped drifters and those with drogues (sock-like
attachments that help the drifter follow deeper currents), all of
which are designed, built, and deployed by students [3], [4].

B. Lagrangian Data Assimilation

Lagrangian ocean data assimilation, the process of incorpo-
rating drifter and float trajectories into numerical models to
improve state estimation, has been an area of active research
for decades. Broadly, data assimilation seeks to optimize the
model state (or model parameters) by minimizing the mis-
match between observations and model outputs. Lagrangian
assimilation has demonstrated advantages over Eulerian meth-
ods in capturing transport dynamics [5].

Researchers have developed several approaches to perform
Lagrangian data assimilation, including optimal interpolation
(OI), variational assimilation (3D-Var or 4D-Var), and the
Ensemble Kalman Filter (EnKF). OI uses a least-squares ap-
proach to minimize the difference between the model state and
the observations, typically by weighting the errors based on
their respective covariances [6]–[8]. Variational assimilation



Fig. 1. Summary of framework. First, we train an autoencoder on snapshots from a numerical simulation of the region of interest. The decoder D can be
used to generate new flow snapshots from the latent space z. Then, we use Bayesian optimization to identify the optimal z∗ that generates a trajectory most
closely aligned with the observed trajectory. Finally, we pass this optimal z∗ through the decoder to reconstruct the full flow field.

Fig. 2. Trajectories of two Sea Grant Microstar drifters. The first was released
on August 11th, 2020 and recovered on August 23rd, 2020. The second was
released on September 6th, 2020 and recovered on October 11th, 2020.

formulates the problem as an optimization of a cost function,
often using adjoint models to efficiently compute gradients
[9]–[11]. Meanwhile, EnKF evaluates an ensemble of model
states and uses the posterior distribution to estimate the mean
state, with the variance of the posterior providing a measure
of uncertainty [12]–[14]. Each of these methods has chal-
lenges: OI does not scale well with increasing dimensionality,
variational assimilation requires the use of complicated or
expensive adjoint models, and EnKF is costly due to the need
to maintain and propagate an ensemble of model states.

Another challenge in Lagrangian data assimilation is the
high dimensionality of ocean models. Strategies to address
this include localized EnKF techniques for dimensionality
reduction [15] and hybrid Lagrangian-Eulerian approaches

[16]. More recently, machine learning has been explored for
reduced-order modeling, such as using recurrent neural net-
works to predict modal coefficients [17]. Other advancements
involve the coupling of Lagrangian data with satellite imagery
for improved surface transport estimates [18], [19] or the use
of Lagrangian observations to recover Eulerian statistics [20],
[21].

Beyond state estimation, some studies have focused on
optimizing drifter deployments for targeted observations [22].
Several studies have focused on applying these methods to spe-
cific ocean regions, demonstrating their effectiveness in diverse
environments such as the Adriatic Sea [23], the Mediterranean
[24], and the Gulf of Mexico during the GLAD experiment
[25]. Lagrangian assimilation is a useful tool for studying
ocean transport processes, including pollution dispersion. For
example, [26] applied these techniques to investigate plastic
transport in Massachusetts Bay, while [27] investigated plastic
dispersion through numerical simulations with modeled drifter
trajectories.

These applications highlight the broad utility of Lagrangian
data assimilation in both operational and research contexts,
motivating novel approaches to further improve prediction
accuracy and computational efficiency.

C. Contributions

Given the growing interest in using machine learning for
fluid mechanics, we introduce a novel method for Lagrangian
data assimilation , outlined in Figure 1 [28]. First, we train
an autoencoder using existing snapshots of the flow obtained



from a numerical simulation (Section I). This reduced-order
model, which uses deep neural networks to encode and decode
the data, can be likened to techniques such as principal compo-
nent analysis (PCA) or empirical orthogonal functions (EOF),
which also extract low-dimensional representations of high-
dimensional datasets. Next, we apply Bayesian optimization to
minimize a cost function that quantifies the difference between
the observed Lagrangian trajectory and the trajectory generated
by the flow derived from the low-dimensional latent space of
the reduced-order model (Section II).

This proposed method is most similar to the framework in
[17] which uses a reduced-order model based on EOF. In both
methodologies, the data assimilation is applied to the latent
space of the selected reduced-order model. We find that the
autoencoder is superior to PCA/EOF for modeling historical
ocean flow patterns because it is better able to capture nonlin-
ear dynamics. The papers differ because [17] uses a recurrent
neural network to capture the temporal dynamics of the EOF
coefficients, allowing for the use of an EnKF to assimilate the
observations in time. We only consider individual snapshots
in time, and we use Bayesian optimization to perform the
assimilation.

We recognize that because our method is based on a
reduced-order model and our method uses black-box opti-
mization, the resulting predictions may not be as high-fidelity
as those of a traditional numerical ocean model. However,
we believe that our method is useful for making predictions
in real time given new observations. Furthermore, our data
assimilation method produces “global” estimates for the whole
region as opposed to other data assimilation methods which
only correct models near the observations.

We first demonstrate the success of the method on a
simulated Kolmogorov flow (Section III) before applying it to
a real-world dataset of the Massachusetts and Cape Cod Bays
(Section IV). Modeling ocean flow in this region is important
for tracking the dispersion of wastewater from the Deer Island
Wastewater Treatment Plant.

I. REDUCED ORDER MODELING WITH AN AUTOENCODER

We first develop a reduced-order surrogate model for the
region of interest by training an autoencoder on snapshots
from a numerical simulation of the region. Autoencoders are
neural networks that learn low-dimensional representations of
data, known as the latent space z. They consist of two parts:
an encoder E, which maps the input to z, and a decoder
D, which reconstructs the input from this low-dimensional
representation (Figure 3). Because these neural networks use
nonlinear activation functions, they are better able to learn
nonlinear manifolds for the latent space compared to standard
linear modal decompositions [29], [30].

The architecture of the encoder and the decoder, shown in
Figure 3, consists of four convolutional layers. The kernel
of each convolutional layer has dimension 3 × 3 and the
stride is 1. The encoder starts with two channels, one for
each component of velocity (u, v). The encoder has increasing
channel dimensions (2 to 32 to 64 to 128 to 256), and the

Fig. 3. Architecture of autoencoder. The autoencoder has an encoder and
a decoder, each made up of blocks consisting of convolutional layers and
nonlinear activation functions. The encoder uses max pooling to reduce the
dimensionality while the decoder uses upsampling to recover the original
dimensionality. The dimension of the latent space z is a flexible parameter.

layers are separated by a ReLU activation function and a max-
pooling operation, progressively reducing the spatial resolution
of the input and extracting high-level features while retaining
essential information. In the final layer of the encoder, the
tensor is flattened and passed through a fully connected
layer to be reduced to the latent dimension. The decoder
reverses the encoding process, expanding the latent space back
into the original spatial dimensions. It begins with a fully
connected layer that expands the latent representation back
into the feature space of 256 × 4 × 4. This is followed by
four convolutional layers with decreasing channel dimensions
(256 to 128 to 64 to 32 to 2). Instead of max-pooling, the
decoder uses bilinear upsampling to progressively increase
the spatial resolution of the data back to its original size,
and ReLU activations are applied after each convolution. This
structure allows the decoder to utilize the compressed latent
representation to accurately reconstruct the flow fields.

To arrive at this final architecture, we experimented with
the size of the kernel, the stride, the number of layers, the
number of channels, the activation function, and the dimension
of the latent space. We also experimented with applying the
autoencoder to a dataset of vorticity instead of velocity.

To train the autoencoder, we split the available data into
training (30%) and validation (70%) sets. The neural network
is optimized with respect to the mean squared error (MSE)
loss function using the Adam optimizer. The training and
validation losses are computed during each epoch, and training
is interrupted when the validation loss does not improve for
more than 10 consecutive epochs.

II. INFERRING THE FLOW WITH BAYESIAN OPTIMIZATION

A. Problem Setup

Given a random flow field that has been parametrized
through an autoencoder in the form:

u(x, t;ω) = φ(x; z(t;ω)), (1)

where ω ∈ Ω is the random argument, and z(t) ∈ Rn is the
latent variable which can be modeled as stochastic processes
with known probability density function (pdf), fz(z). This pdf
can be obtained by using the encoder on a historical record of
the flow. In what follows, we will focus on the case where the



flow is either steady or slowly varying, i.e. over the interval
that we observe it, the latent variables can be assumed to be
constant. For ocean applications, this is a good assumption as
the flow is varying slowly, and we can look at the characteristic
timescales of the flow to determine an appropriate length of
time for which this assumption is appropriate.

Suppose we have a realization of the flow, υ(x), that can
only be observed through a set of Lagrangian trajectories (with
arbitrary but known initial conditions, (t0,i, x0,i), and length,
Ti):

X (t;x0,i), t ∈ [t0,i, t0,i + Ti], i = 1, ...,m, (2)

where for each trajectory i:

d

dt
X (t;x0,i) = υ(X (t;x0,i)), with X (t0;x0,i) = x0,i,

(3)
our goal is to infer the value of the stochastic vector z ∈ Rn

that corresponds to the flow field υ(x).
We define a cost function C(z) that depends on the latent

variable z and measures the integrated distance between m
trajectories X̂i(z) obtained from a flow produced by decoding
the latent variable z and the observed drifter trajectories Xi.

C(z) = 1

m

m∑
i=1

∫ t0,i+Ti

t0,i

∥∥∥X̂ (t;x0,i; z)−X (t;x0,i)
∥∥∥2 dt (4)

B. Algorithm

We use Bayesian optimization (BO) to identify the optimal
latent variable z∗ to reconstruct the flow. To perform BO,
a small initial dataset is constructed by computing the cost
function C(z) for a random set of possible latent variables
z. The surrogate is trained with the initial dataset, and this
surrogate is used to calculate the acquisition function. Points
with the lowest acquisition function are sequentially added to
the training set, and the surrogate model is updated. After
some number of iterations of the algorithm, the optimal z∗ is
the point in the dataset that results in the lowest C(z). The
algorithm is also described in pseudocode below.

Algorithm 1 Bayesian Optimization for Minimizing C(z)

Require: Function C(z) to minimize, GP prior, acquisition
function a(z)
Initialize D0 = {(zj , C(zj))}nj=1 with n initial samples
Fit GP surrogate model to D0

for t = 1, 2, . . . , T do
Compute surrogate GP posterior: µt(z) and σ2

t (z)
Define acquisition function a(z) using µt(z) and σ2

t (z)
Find next query point: zt+1 = argminz a(z)
Evaluate C(zt+1) and update dataset:
Dt+1 = Dt ∪ {(zt+1, C(zt+1))}

Refit GP surrogate model to Dt+1

end for

Return z∗ = argminz∈DT
C(z)

1) Surrogate: To model the relationship between z and
C(z) we test both standard Gaussian Process (GP) Regression
(GPR) from GPy for which the kernel is the radial basis
function and deep GPR from GPyTorch [31]. We also tested
using an ensemble of neural networks as the surrogate model
for C(z), and we also experimented with particle swarm
optimization and a genetic algorithm, but we found the results
to be best with GPR.

2) Acquisition Function: We test both the lower confidence
bound (LCB) criterion and the expected improvement (EI)
criterion to minimize the cost function [32]–[34]. These ac-
quisition functions guide the exploration-exploitation tradeoff
in Bayesian optimization by deciding where to sample next in
the search space. The LCB criterion is given by

aLCB(x) = µt(x)− κ · σt(x), (5)

where µt(x) and σt(x) represent the posterior mean and
standard deviation of the Gaussian process at iteration t, and
the parameter κ > 0 controls the balance between exploration
(sampling points with high uncertainty) and exploitation (sam-
pling near the predicted minimum).

We also experiment with the EI criterion, which seeks to
maximize the expected gain over the current best observed
value. The EI is given by

aEI(x) = (µ(x)− ybest) Φ (z) + σ(x)ϕ (z) , (6)

where ybest is the best observed value so far, Φ is the
cumulative distribution function (CDF) of the standard normal
distribution, ϕ is the probability density function (PDF) of the
standard normal distribution, and z = (µ(x)− ybest)/σ(x).

C. Characteristic Timescale

We determine the characteristic timescale by analyzing the
autocorrelation of the velocity components u and v. For
each component, we compute the autocorrelation function
and define the characteristic timescale T as the time lag at
which the autocorrelation drops to 1/e. This timescale reveals
how persistent the flow dynamics remain over time; longer
timescales correspond to more persistent patterns. By selecting
an appropriate timescale T , we assume that the flow remains
steady or varies slowly over the time domain of interest.

III. KOLMOGOROV FLOW

We first test the proposed method on a protoypical two-
dimensional Kolmogorov flow, a simple model of fluid flow
driven by sinusoidal forcing. The simplicity of the flow allows
for controlled testing while still providing a good example of
key features found in more complex ocean dynamics.

A. Data

To generate data, we start with the incompressible 2D
Navier Stokes

∂u

∂t
= −u · ∇u−∇p+ ν∇2u+ f (7)

∇ · u = 0 (8)



In component form, the equations are:

∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
= −∂p

∂x
+ ν∇2ux + fx (9)

∂uy

∂t
+ ux

∂uy

∂x
+ uy

∂uy

∂y
= −∂p

∂y
+ ν∇2uy + fy (10)

with vorticity

ω =
∂uy

∂x
− ∂ux

∂y
(11)

The equations can be transformed into Fourier space where

ûx = F(ux) and ûy = F(uy) (12)

and
ω̂(kx, ky) = ikxûy − ikyûx (13)

To find a solution to the equation with a numerical solver, we
write the time evolution of the velocity components ûx and
ûy in Fourier space:

∂

∂t

[
ûx

ûy

]
=

[
−ûyω̂
ûxω̂

]
− νk2

[
ûx

ûy

]
+

[
f̂x
f̂y

]
(14)

where
k2 = k2x + k2y (15)

We set the forcing in one direction

fx = sin(kfy) and fy = 0 (16)

We use a fourth order Runge-Kutta (MATLAB ode45) to
solve the equation for ûx and ûx from which we obtain ux and
uy . We run the simulation on a torus [0, 2π)2 with a timestep
of 0.5 to generate 20,000 snapshots.

B. Autoencoder Results

We test latent dimensions of 20 and 50, and we use 6000
snapshots for training and 14000 for validation. The validation
root mean squared errors (RMSE) for the Kolmogorov flow
are listed in Table I. The errors from the CNN autoencoder
are lower than both those from PCA and those from fully
connected autoencoder (which does not use convolutional
layers). We also recover the maximum vorticity from the
predictions and show in Figure 4 that the CNN is better able to
capture the important large transient features. Similarly, Figure
5 shows the autoencoder reconstruction for a snapshot with
an average error. Overall, the CNN autoencoder with a latent
dimension of 20 is a suitable reduced-order model for the
Kolmogorov flow.

TABLE I
RMSE VALUES FOR DIFFERENT REDUCED-ORDER MODELS FOR THE

KOLMOGOROV DATASET WITH LATENT DIMENSIONS 20 AND 50

Model Latent 20 Latent 50
RMSE

u
RMSE

v
RMSE
ω

RMSE
u

RMSE
v

RMSE
ω

PCA 0.226 0.322 1.378 0.108 0.168 0.973
FCNN 0.394 0.182 1.336 0.378 0.150 1.276
CNN 0.117 0.124 0.736 0.084 0.105 0.615

Fig. 4. Probability density function of the predicted maximum vorticity
obtained for the three dimensionality reduction methods (PCA, FCNN, CNN)
for a latent dimension of 20. The CNN best captures the true maximum
vorticity.

Fig. 5. Comparison between true flow fields and fields reconstructed from
the autoencoder with latent dimension of 20 at a timestep with an average
model error. The first row shows the true flow field, the second row shows
the predicted flow field, and the third row shows the difference between
the true and predicted fields. The left column shows the horizontal velocity
component, the middle column shows the vertical velocity component, and
the right column shows the vorticity.

C. Optimization Results

We randomly select three trajectories for a random timestep,
and we run the optimization for 100 iterations using a standard
GP surrogate with a latent dimension of 20 and the LCB
acquisition function. During the analysis, we compare the
reconstruction from the optimal solution z∗ (Figure 6) to the
reconstruction that results from taking the average of the top
five solutions (Figure 7). We find that taking the top five
solutions can be used to estimate uncertainty, and in some
cases can increase the overall accuracy.

1) Convergence Analysis: To further investigate the
method, we performed tests examining the effect of the



Fig. 6. Results from running the optimization with three drifter trajectories for
150 iterations with the LCB acquisition function, a latent dimension of 20, and
a standard GP surrogate. The top row shows the true flow field with the true
trajectories. The second row shows the reconstructed flow field obtained by
decoding the optimal latent variable, along with the corresponding trajectories
that minimized the cost function. The third row shows the error. The left
column shows the horizontal velocity component, the middle column shows
the vertical velocity component, and the right column shows the vorticity.

drifters’ initial release point with the goal of evaluating the
stability and robustness of the method and the sensitivity of
the reconstruction to inputs. In both tests, we ran each opti-
mization for 75 iterations, with the LCB acquisition function,
a latent dimension of 50, and a deep GP surrogate.

a) Fixing the Initial Release Position of the Drifters for
Different Timesteps: In this experiment, we performed the
optimization for trajectories released from the same three
spatial positions for 1000 different timesteps. Averaged over
the 1000 timesteps, the reconstruction error is lowest in the
neighborhood near the release of the drifters, suggesting that
the model performs better in regions with more observations
(Figure 8). However, the error far from the drifters’ release
points remains reasonable, confirming that our method is
useful for obtaining a global estimate of the flow field.

b) Varying the Initial Release Position of the Drifters for
a Fixed Timestep: Here, we fixed the timestep and varied
the initial spatial location at which the drifters are released
by randomly selecting sets of three locations for each of the
1000 experiments. This experiment revealed that prediction
is improved when drifters are released near coherent flow
structures, such as eddies or fronts (Figure 9).

IV. MASSACHUSETTS AND CAPE COD BAYS

Having demonstrated the success of the method on the
Kolmogorov flow, we apply the framework to a reanalysis
dataset of the Massachusetts and Cape Cod Bays, and we
eventually show how the method can be used with real-world
observed trajectories.

Fig. 7. Results from taking the five best z that were obtained from running the
optimization with three trajectories for 150 iterations with the LCB acquisition
function, a latent dimension of 20, and a standard GP surrogate. The top
row shows the true field with the true trajectories. The second row shows
the reconstructed field, obtained by taking the average of decoding the top
five optimal latent variables, along with the corresponding trajectories that
minimized the cost function. The third row shows the error. The last row
shows the standard deviation of the top five flows, serving as a way to estimate
uncertainty.

Fig. 8. Average absolute error for u (left), v (center), ω (right) reconstructed
with three trajectories for 1000 different time steps of the Kolmogorov flow
with the same drifter initial position. The black points represent the initial
release point of the three drifters. The average absolute error is lowest near
the release point for u and v. In this experiment, we use the autoencoder with
latent dimension 50, a deep GP surrogate, and the LCB acquisition function.

A. Data: Finite Volume Community Ocean Model

The Finite Volume Community Ocean Model is a compre-
hensive high resolution physics-based reanalysis model that
integrates real-world measurements in the numerical simula-
tion [35]. This model has been used for the Northeast Coastal
Ocean Forecast System (NECOFS), a region with complex
coastlines, freshwater sources, and a significant fishing in-
dustry. The model consists of daily estimates for eastward,



Fig. 9. Histogram of the root mean square error for u (left), v (center),
ω (right) at one time step reconstructed with three trajectories for 1000
different sets of random drifter initial position. In this experiment, we use
the autoencoder with latent dimension 50, a deep GP surrogate, and the LCB
acquisition function.

northward, and upward velocity among other variables from
2005 to 2013 at 45 sigma layers, but we only consider the 2D
velocity at the surface. While FVCOM is accurate and fine-
grained, it is a very complex model that requires significant
parameter tuning. The data are only available for past years,
and the model is too expensive and slow to run in real time.

In addition to the data from the model, we have measure-
ments of Lagrangian trajectories from passive drifters, some
of which were collected by the MIT Sea Grant office (Figure
2) and others by the Student Drifter Program. There also exist
other sensor measurements including wind speed from buoys,
sea surface height from satellites, and tide charts. We hope to
incorporate this information into our model as needed in the
future.

B. Autoencoder Results

For the Massachusetts and Cape Cod Bays, we test latent
dimensions of 50 and 75 to achieve reasonable reconstruction
accuracies; however, these choices require the use of a deep
GP surrogate, as standard GPs do not scale well with higher
dimensions. From the nine years of reanalysis data, we use the
first 4642 snapshots for training and the following 10833 for
validation. We applied a mask in the loss function to ignore
any values that are predicted over land. The validation RMSE
for u and v are listed in Table II. Again, the CNN autoencoder
outperforms PCA.

TABLE II
RMSE VALUES FOR DIFFERENT REDUCED-ORDER MODELS FOR THE

FVCOM DATASET WITH LATENT DIMENSIONS 50 AND 75

Model Latent 50 Latent 75
RMSE
u (m/s)

RMSE
v (m/s)

RMSE
u (m/s)

RMSE
v (m/s)

PCA 0.0605 0.0635 0.0515 0.0544
CNN 0.0564 0.0576 0.0512 0.0518

C. Optimization Results

1) Validation with Synthetic Trajectories: We first validate
the method on synthetic trajectories — trajectories generated
by numerically simulating the advection of passive particles
through a known velocity field. We generate five synthetic
drifter trajectories with random initial positions from the flow
field at a random timestep, and we run the optimization for

Fig. 10. Comparison between true field and field reconstructed from autoen-
coder with a latent dimension of 75 at a timestep with an average model error
(June 14th, 2010). The first row shows the true field, the second row shows
the predicted field, and the third row shows the difference between the true
and predicted fields. The left and right columns correspond to the horizontal
and vertical velocity components, respectively.

100 iterations with the LCB criterion. We show the results
from taking the average of the top five solutions in Figures 11
and 12.

Fig. 11. Results from taking the five best z that were obtained from running
the optimization with five synthetic trajectories (June 8th, 2008) for 100
iterations with the LCB acquisition function, an autoencoder with latent
dimension 75, and a deep GP surrogate for the cost function. The top row
shows the true (u, v) field and the streamfunction ψ. The second row shows
the (u∗, v∗) and ψ∗ reconstructed from taking the average of decoding the
top five optimal latent variables, along with the corresponding trajectories that
minimized the cost function.



Fig. 12. Results from taking the five best z that were obtained from running
the optimization with five synthetic trajectories (June 8th, 2008) for 100
iterations with the LCB acquisition function, an autoencoder with latent
dimension 75, and a deep GP surrogate for the cost function. The first row
shows the true velocities, the second row shows the mean of the predictions,
the third row shows the difference, and the fourth row shows the standard
deviation of the predictions. This standard deviation serves as a useful way
to measure uncertainty because regions with high standard deviation match
regions with high error.

2) Application to Real-World Observed Trajectories: Fi-
nally, we apply the method to the real observed trajectories.
We were unable to use the Microstar trajectories from 2020
because there is only one observation at any given time, and
our previous experiments demonstrated that optimization is
best when using several simultaneous trajectories. Given this
constraint, our best option was to use observations from the
Student Drifter Program in 2010 for which we have more
simultaneous trajectories in the Massachusetts Bay. We run the
optimization to generate a flow field that could have potentially
generated the observed trajectory. We show the results from
taking the mean of the top three predictions in Figure 13.
Given that we only have measurements from one drifter, we
have no way to validate the predictions. By launching more
simultaneous drifters, we could better evaluate the success of
the method in the real world.

Fig. 13. Results from taking the three best z that were obtained from running
the optimization using three real-world observed trajectories from July 9th,
2010 as input. The top left shows the predicted velocity field, the top right
shows the predicted streamfunction, the second row shows the predicted
velocities, and the third row shows the standard deviation of the three predicted
velocities which can be used for uncertainty quantification. The velocity field
also shows the observed trajectories in red and the trajectories found from the
optimization in black.

V. CONCLUSION

Our methodology leverages a combination of reduced-order
modeling and Bayesian optimization to reconstruct regional
ocean surface flow from sparse Lagrangian drifter observa-
tions. First, we train an autoencoder using snapshots from
a numerical simulation to create a reduced-order model that
efficiently captures the essential flow dynamics in a low-
dimensional latent space. Then, we apply Bayesian optimiza-
tion to minimize a cost function that quantifies the discrepancy
between observed drifter trajectories and trajectories generated
by the latent-space flow representation. This optimization
guides the reconstruction of the underlying flow field.

Overall, the method is able to reconstruct a regional ocean
surface flow in minutes using observed Lagrangian drifter tra-
jectories, and it is useful for determining the minimum number
of trajectories needed to accurately describe the flow. This
research will inform the purchase and deployment of future
Microstar drifters for improved understanding of wastewater
dispersion in the Massachusetts Bay. Going forward, the
method can be used to determine where to launch drifters,
and the reconstructed surface flow can be used to estimate the
full vertical profile of the region of interest [36].

ACKNOWLEDGMENT

This research was funded by MIT NOAA Sea Grant and the
National Science Foundation Graduate Research Fellowship.



We thank the scientists at the MIT NOAA Sea Grant office
for motivating the project. We thank Michael DeFilippo for
collecting the Microstar drifter observations. We thank James
Manning for providing the observations from the Student
Drifter Program.

REFERENCES

[1] P. F. J. Lermusiaux, P. Malanotte-Rizzoli, D. Stammer, J. Carton,
J. Cummings, and A. M. Moore, “Progress and Prospects of U.S. Data
Assimilation in Ocean Research,” Oceanography, Mar. 2006. [Online].
Available: https://doi.org/10.5670/oceanog.2006.102

[2] D. Ciani, E. Charles, B. Buongiorno Nardelli, M.-H. Rio, and
R. Santoleri, “Ocean Currents Reconstruction from a Combination of
Altimeter and Ocean Colour Data: A Feasibility Study,” Remote Sensing,
vol. 13, no. 12, 2021. [Online]. Available: https://www.mdpi.com/2072-
4292/13/12/2389

[3] J. Manning, E. Pelletier, A. Smith, and C. Stymiest, “Student
built, Fishermen deployed, Satellite tracked Drifters,” Aug. 2014.
[Online]. Available: https://www.gulfofmaine.org/public/ecosystem-
indicator-partnership/monthly-journals/2014-08/

[4] I. I. Rypina, A. Macdonald, S. Yoshida, J. P. Manning, M. Gregory,
N. Rozen, and K. Buesseler, “Spreading pathways of Pilgrim
Nuclear Power Station wastewater in and around Cape Cod Bay:
Estimates from ocean drifter observations,” Journal of Environmental
Radioactivity, vol. 255, p. 107039, Dec. 2022. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0265931X22002302

[5] L. Sun, S. G. Penny, and M. Harrison, “Impacts of the Lagrangian Data
Assimilation of Surface Drifters on Estimating Ocean Circulation during
the Gulf of Mexico Grand Lagrangian Deployment,” Monthly Weather
Review, vol. 150, no. 4, pp. 949–965, Apr. 2022. [Online]. Avail-
able: https://journals.ametsoc.org/view/journals/mwre/150/4/MWR-D-
21-0123.1.xml

[6] A. Molcard, L. I. Piterbarg, A. Griffa, T. M. Özgökmen, and A. J. Mar-
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[18] D. Béréziat and I. Herlin, “Coupling Dynamic Equations and Satellite
Images for Modelling Ocean Surface Circulation,” in Computer Vision,
Imaging and Computer Graphics - Theory and Applications, S. Battiato,
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