
Nonlinear Dynamics manuscript No.
(will be inserted by the editor)

What are the most informative data points for
predicting extreme events?

Likelihood-weighted data selection to improve the prediction
of extreme events in complex dynamical systems

Bianca Champenois (Corresponding
Author) · Themistoklis P. Sapsis

Received: date / Accepted: date

Abstract The growing availability of large datasets that describe complex dy-
namical systems, such as climate models and turbulence simulations, has made
machine learning an increasingly popular tool for modeling and analysis, but the
inherent low representation of extreme events poses a major challenge for model
accuracy in the tails of the distribution. This raises a fundamental question: Given
a large dataset, which data points should we use to train machine learning models
that effectively learn extremes? To address this question, we study a likelihood-
weighted active data selection framework that identifies the most informative data
points for model training. The framework improves predictions of extreme values
of a target observable, scales to high-dimensional systems, and is model-agnostic.
Unlike traditional active learning, which assumes the ability to query new data,
our method is designed for problems where the dataset is fixed but vast, focusing
on selection rather than acquisition. Points are scored using a likelihood-weighted
uncertainty sampling criterion that prioritizes samples expected to reduce model
uncertainty and improve predictions in the tails of the distribution for systems
with non-Gaussian statistics. When applied to a machine learning climate model
with input dimensionality on the order of tens of thousands, we find that the
likelihood-weighted active data selection algorithm most accurately captures the
statistics of extreme events using only a fraction of the original dataset. We also
introduce analysis techniques to further interpret the optimally selected points.
Looking ahead, the approach can serve as a compression algorithm that preserves
information associated with extreme events in vast datasets.
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1 Introduction

Many important scientific and engineering problems involve complex dynamical
systems, such as turbulent flows or the climate. Often in such settings, we now
have access to terabytes or even petabytes of simulation, observational, or ex-
perimental data. This abundance of data, coupled with the complexity of the
underlying physics, has made machine learning (ML) an increasingly popular tool
for modeling and analysis of dynamical systems [10, 59, 25, 36]. However, extreme
events, which are high-impact events that lie in the tails of the probability dis-
tribution (e.g., rogue waves or extreme weather), are typically underrepresented
in datasets not explicitly designed to capture extremes [1, 22, 71]. Standard ML
models trained on available datasets tend to prioritize the regions of the domain
where most points exist. As a result, they often fail to capture extremes or con-
verge slowly, resulting in poor generalization where accurate predictions matter
most [55]. From this perspective, not all points in a given dataset carry the same
value of information, so using the full dataset or a random subset of the dataset
without proper selection can be inefficient or ineffective for training [32, 84, 67].
Therefore, identifying a subset of training data that is most informative for pre-
dicting extreme events can improve the model’s ability to capture the full statistics
while reducing computational cost of training on large datasets.

To address the challenges of training on large or randomly sampled datasets,
active learning and data selection methods have emerged as effective approaches to
efficiently choosing training data by iteratively identifying points that maximize
information gain or reduce model uncertainty [46, 16, 76]. These methods are
valuable in scientific applications where data acquisition or simulation is expen-
sive or time-consuming, and in settings with vast datasets requiring subsampling.
Among these methods, likelihood-weighted sampling, which emphasizes samples
that balance high uncertainty with a high likelihood of extreme outcomes, has
been identified as particularly effective for capturing the tails of the distribution
[51, 70, 72, 7, 8]. Likelihood-weighted active learning has been successfully ap-
plied for modeling prototypical nonlinear systems [70, 72], hydrological systems
[8], pandemics [56], and offshore structures [51, 56, 30, 37].

Despite their promise, likelihood-weighted criteria have mainly been applied
in active learning settings, where data can be queried on demand, rather than
in active data selection, where datasets are fixed yet vast. Previous work has
explored the potential of likelihood-weighted criteria for quantifying the value
of individual data points within a given dataset in a posterior manor (i.e., after
training the model using the full dataset) [55], but did not formulate data selection
algorithms focused on improving training to better capture extreme events with
less data. Furthermore, the application of likelihood-weighted active learning and
active selection methods to extremely high-dimensional systems — such as those
with input dimensions on the order of tens of thousands or more — remains largely
understudied.

Here, we explore these directions by formalizing a likelihood-weighted active
data selection framework for large, fixed datasets obtained from systems with non-
Gaussian statistics [71]. Additionally, we address the challenge of high-dimensional
inputs to make the framework practical for real-world applications. Overall, the
framework (i) prioritizes the most informative points in large datasets, (ii) enables
efficient data compression, (iii) reduces training costs, (iv) improves model gener-
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alization for extreme events, and (v) allows for the interpretation of the selected
points. A key advantage of the approach is that it is model-agnostic and adapt-
able to any ML architecture. We demonstrate the utility of the method through
an application to climate modeling, where it is used to improve the predictions of
extreme weather events in a system with dimensionality on the order of 105, using
a fraction of the full dataset.

The structure of the paper is as follows. In Section 2, we introduce the ac-
tive data selection algorithm and the likelihood-weighted sampling criterion. In
Section 3, we explain how to quantify the uncertainty needed to evaluate this se-
lection criterion. In Section 4, we describe how to extend the method to systems
for which the inputs are high-dimensional functionals. In Section 5, we apply the
framework to predict extreme events in the Majda–McLaughlin–Tabak (MMT)
model, a one-dimensional model for dispersive wave turbulence. Finally, in Sec-
tion 6, we apply the framework to a real-world problem of learning a correction
operator for the outputs of a coarse resolution climate model, in which accurately
capturing extreme weather events is critical. In both applications, we introduce
methods to interpret the selected points and gain insight into the data selection
algorithm.

2 Likelihood-Weighted Data Selection

2.1 Supervised Machine Learning for Complex Dynamical Systems

We consider the setting of supervised ML in which a model Mθ : X → Y maps
input features x ∈ X to targets y ∈ Y. The model architecture (e.g., neural
network, Gaussian process) defines the functional form ofMθ, parameterized by
θ, which is trained to minimize a loss function L over a training set of size P

Dtrain = {(xj , yj)}Pj=1. (1)

The goal is to find parameters θ∗ that minimize the loss:

θ∗ = argmin
θ

P∑
j=1

L (Mθ(xj), yj) . (2)

In the context of complex dynamical systems, Figure 1 highlights the setting

Mθ : X → U → Y (3)

where X is a high-dimensional input field, U is a field that is a function of X ,
and Y is a scalar observable extracted from U . The ML model can be configured
to predict U or Y depending on the task. To illustrate, in the climate modeling
application (Section 6), the input X is data from a coarse-resolution climate model.
The model Mθ is a debiasing operator (correction operator) trained to map the
coarse-resolution model outputs X to their debiased counterpart U . The scalar
observable Y is then extracted from the corrected field U , such as, for example,
maximum temperature over space or temperature at a specific location.
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Fig. 1 Schematic of the mapping from input space to observable. Input fields x ∈ X are
mapped to output fields u ∈ U through a forward model (ML model or physics-based numerical
model), and a scalar observable y ∈ Y ∈ R is extracted from u via an observable-specific
operator g(u). This framework is illustrated for two applications: in the MMT case (Section 5),
the inputs are the initial conditions of the system, and the observable is the maximum wave
height over a specified time horizon; in the climate correction case (Section 6), the input is
data from a coarse-resolution climate simulation, the output is its debiased counterpart, and
the observable is a scalar quantity of interest such as temperature or humidity at a specific
location.

2.2 Active Data Selection

Active data selection is a method for choosing training points for supervised ML
from a fixed, labeled dataset to improve model performance. In this setting, the
labels yj corresponding to inputs xj are already known for a predefined candidate
set of size M [60, 3, 28]:

Dcand = {(xj , yj)}Mj=1. (4)

A selection criterion, or acquisition function in the language of active learning,
is used to sequentially identify a subset of informative samples Dselect ⊂ Dcand,
which are then added to the training set [46]:

Dtrain ← Dtrain ∪ Dselect. (5)

This approach is also referred to as greedy approximation, active sampling, opti-
mal sampling, or active search; here, we use the term active data selection. In the
next section, we introduce likelihood-weighted data selection, a variant that pri-
oritizes points expected to improve model performance in the tails of the output
distribution.

Active data selection differs from active learning, where labels are not initially
known. In active learning, the algorithm sequentially selects new input points xt
according to the acquisition function, queries their corresponding labels yt through
experiment or simulation, and adds the new labeled pairs (xt, yt) to the training
set [46, 16, 27, 76]. Likelihood-weighted strategies have been widely applied in
this setting to improve predictions of extreme events. Active learning is part of a
broader family of sequential data acquisition strategies, including optimal exper-
imental design, Bayesian experimental design, and Bayesian optimization, which
also aim to identify the most informative data points [68, 13, 27, 29, 37].
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In the context of extreme events, we evaluate the data selection algorithms
based on how well the resulting models, trained on the selected data, capture the
tails of the target observable’s distribution. Specifically, we consider the log-pdf
error (LPE), which measures the integrated difference between the log of the true
probability density function (pdf) obtained from the true y and the log of the
conditional pdf from the model’s posterior mean ŷ.

LPE =

∫
| log py(y)− log pŷ(y)|dy. (6)

This loss function is similar to the Kullback-Leibler (KL) divergence but, unlike
KL, is not weighted by the output distribution py, so extreme events contribute
more and errors in the tails are more heavily penalized. In cases where only the
left or right tail is of interest, we adapt the integration limits to target that side
of the distribution. We benchmark against a Monte Carlo (MC) selection criterion
that randomly chooses points from the candidate set, which provides a relevant
baseline given the common use of random data splitting in ML.

2.3 Algorithm Overview

We start with a dataset of candidate points, denoted Dcand = {(xj , yj)}Mj=1, con-
sisting of all available labeled input-output pairs from which training points can
be drawn. We initialize the data selection algorithm (illustrated in Figure 2) with
a small training set of size P (0) randomly selected points from Dcand,

D(0)
train = {(xj , yj)}P

(0)

j=1 , (7)

where (0) corresponds to the initial iteration and (t) corresponds to the tth iter-
ation. The remaining points form the candidate set for the first iteration of the
algorithm,

D(0)
cand = Dcand \ D(0)

train. (8)

At each iteration t, a modelM(t) is trained on the current training set D(t)
train. The

selection criterion q(x) is then evaluated on all points in the current candidate set

D(t)
cand, using the predictive mean and epistemic uncertainty of the target observable

estimated by the probabilistic model M(t). The point (or batch of points) that
maximizes the selection criterion q(x) (acquisition function) is selected and added
to the training set of size P (t):

B(t) = {(xj , yj)}bj=1 =

{
(xj ,M(t)(xj))

∣∣∣∣∣ xj ∈ argmax
x (top b)

q(x)

}
(9)

D(t+1)
train = D(t)

train ∪ B
(t), D(t+1)

cand = D(t)
cand \ B

(t). (10)

Here, B(t) ⊂ D(t)
cand denotes the selected batch, which may contain a single point or

multiple points depending on the batch size b. Batching reduces the frequency of
retraining the model, which lowers computational cost. Although this may slightly
reduce optimality in selection, previous work shows that it performs comparably
for moderate batch sizes [56].
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The loop is repeated — retraining the model, evaluating the criterion, and
updating the selected dataset — until the model error converges or falls below a
predefined threshold. Through the described process, the selected data points, op-
timized for capturing extreme events, are chosen according to both the observable
and the model architecture.

The final output of the algorithm is a high-value subset of the full dataset,
together with a model trained using this subset. The dataset is selected to optimize
model performance, with particular emphasis on extremes. Moreover, the points
selected at each iteration can be analyzed to identify the most informative regions
of the input space, and the final subset of optimal points can serve as a compressed
representation of the full dataset that retains information relevant to extremes.

Fig. 2 Data Selection Algorithm. Points are sequentially selected from the candidate
dataset according to the selection criterion and added to the training set to improve model
prediction. The output of the algorithm is a model that has been trained on an optimal subset
of the data with respect to predicting the target observable’s statistics. At each iteration of
the algorithm, the selected points can be interpreted to gain insights into which points are
more valuable.

2.4 Selection Criterion

The key element of the data selection algorithm is the selection criterion that iden-
tifies the most valuable points for model training. The choice of the selection crite-
rion depends on the nature of the system (e.g., non-Gaussian, high-dimensional),
the goal of the modeling problem (e.g., optimization, extreme event identification),
and other constraints (e.g., computational costs). In general, the selection criterion
should strike a balance between exploration and exploitation. A common choice
for the selection criterion is uncertainty sampling (US) where points are ranked
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by their epistemic variance [46, 54, 41].

qUS(x) = σ2(x). (11)

This choice is well motivated when using mean squared error (MSE) as a perfor-
mance metric, since reducing the predictive variance directly lowers the expected
MSE across the input space. However, this criterion does not take into account
the magnitude of the output and, therefore, fails to account for the importance of
accurately representing extreme events.

For problems with extreme events, we instead use a likelihood-weighted crite-
rion to select optimal training points and quantify the value of points in the dataset
[51, 70]. The likelihood-weighted selection criterion, like US, targets input points
that reduce the model uncertainty, but it also prioritizes points expected to pro-
duce extreme outputs. Sampling criteria that incorporate information about the
output distribution were first introduced in Mohamad and Sapsis [51] and further
improved upon in Sapsis [70] and Sapsis and Blanchard [72]. In the original for-
mulation (from Mohamad and Sapsis [51]), the criterion compares the distribution
of the model output with and without a hypothetical new sample to guide data
acquisition. Specifically, the criterion minimizes the integrated absolute difference
between the logarithms of the estimated output pdf, py(y), and a perturbed ver-
sion p+y (y | x) that accounts for the effect of adding a new sample corresponding
to input x:

q(x) =

∫
Sy

∣∣∣log py(y)− log p+y (y | x)
∣∣∣ dy. (12)

Here, py(y) is the estimated output pdf based on the current samples, p+y (y | x)
is the output pdf after hypothetically adding sample x, and Sy is the support of
the output variable y. Minimizing q(x) selects the input x that most improves
accuracy in low-probability regions of the output space. For bounded Sy, this
approach asymptotically converges to the true output statistics, even in regions
with low probability of occurrence [72]. However, Equation 12 is computationally
expensive and its lack of smooth gradients makes it unsuitable for gradient-based
optimization needed in active learning settings.

Sapsis [70] derived an upper bound (shown to be optimal for Gaussian process
regression in Sapsis and Blanchard [72]) that has a lower cost of computation and
is analytically differentiable

q(x) ≤ κ
∫
σ2(z;x)

px(z)

py(y(z))
dz, (13)

where σ2(z;x) is the predictive variance at input z after including a sample at
x, px is the input probability density, κ is a scaling coefficient, and the weighting
factor 1/py emphasizes extreme outputs. This criterion quantifies the expected
global reduction in uncertainty, weighted by the likelihood of extreme outputs.

Building on this, Blanchard and Sapsis [8] proposed a simplified likelihood-
weighted uncertainty sampling (LW-US) criterion that avoids the integral by eval-
uating the uncertainty and weights locally at the candidate point:

qLW-US(x) = σ2(x)
px(x)

py(y(x))
. (14)
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This selection criterion balances (i) the epistemic variance σ2, which quantifies un-
certainty reduction by favoring points where the model is least confident; (ii) the
input probability px, which emphasizes points likely to occur by assigning higher
weight to inputs that are representative of the underlying distribution; and (iii)
the inverse output probability 1/py, which emphasizes points leading to extreme
outcomes, since low-probability events in the tails of the distribution have large
inverse values and are thus prioritized. This balance ensures that, among likely
inputs, the criterion promotes those with a disproportionate effect on the output,
and among equally impactful inputs, it favors those that are more representative
of the underlying input distribution. Together, these terms guide the exploration-
exploitation trade-off, prioritizing candidate points that reduce uncertainty, are
likely to occur, and most importantly, are likely to result in extreme events. When
used for model training, these points produce models that are better able to rep-
resent the tails of the distribution in non-Gaussian settings. The criterion can also
be thought of as a scoring function (i.e., a function that assigns value) because it
gives priority to data points with the highest value with respect to improving the
statistics of the target observable.

3 Model Uncertainty Quantification

The LW-US selection criterion requires an estimate for the epistemic uncertainty
σ2(x) (in Equation 14) of the model. In many settings, the uncertainty is quan-
tified using traditional Bayesian supervised learning methods such as Bayesian
regression or Gaussian process regression [70, 8, 7, 85]. However, these methods
are limited: Bayesian regression can fail when modeling nonlinear systems, and
Gaussian process regression suffers from performance issues on high-dimensional
or large datasets. Newer neural network architectures that can quantify uncer-
tainty are able to overcome these problems [53, 35, 31, 88, 57, 89, 44]. We will
focus on ensembles of neural networks (E-NN) and dropout neural networks (D-
NN), but a comprehensive study of various computational methods for quantifying
the uncertainty of surrogate models for complex dynamical systems can be found
in Guth et al. [31], and further methods are provided in Angelopoulos and Bates
[2]. A key advantage of using E-NN or D-NN is that they leverage existing neural
networks already developed for the application of interest, eliminating the need
to construct a separate surrogate model for uncertainty quantification and allow-
ing users to retain the architecture that best suits their system, regardless of its
complexity.

3.1 Ensemble of Neural Networks

In the E-NN, multiple models with identical architectures and hyperparameters
are trained on the same dataset, each initialized with different random weights.
The resulting prediction ŷ is the mean of the n neural network predictions ŷi

ŷ(x) =
1

n

n∑
i=1

ŷi(x) =
1

n

n∑
i=1

Mi(x) (15)
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where ŷi is the prediction of the ith neural network in the ensemble. Similarly, the
model uncertainty can be quantified via the variance of the predictions

σ2(x) =
1

n− 1

n∑
i=1

(ŷi(x)− ŷ(x))2 =
1

n− 1

n∑
i=1

(Mi(x)− ŷ(x))2 . (16)

Guth et al. [31] and Pickering and Sapsis [55] showed that even small ensembles
of neural networks, as low as N = 2, can still perform well for the purpose of
quantifying uncertainty for active learning.

3.2 Ensemble of Dropout Neural Networks

In a D-NN, only one model is trained, but the model includes dropout layers
to introduce stochasticity [80]. During the prediction step, multiple predictions
are made with different randomly dropped nodes, resulting in higher variance
predictions [24]. Again, the resulting prediction is the mean of all the predictions,
and the variance of the predictions can be used to create a probabilistic prediction.
The dropout layers require additional training time, but only one model is trained,
so the overall computation time is lower for the D-NN.

4 Practical Considerations for Evaluating the Likelihood-Weighted
Selection Criterion in High-Dimensional Systems

This section presents the complete procedure for evaluating the LW-US selection
criterion for high-dimensional or functional inputs, with a focus on practical im-
plementation. We discuss how to handle cases where the training and inference
datasets differ — an important consideration in real-world applications. We also
explain how to compute probability densities.

As a reminder, the LW-US selection criterion depends on both the input x and
the corresponding predicted observable ŷ(x), and it incorporates three terms: (i)
the predictive uncertainty σ2(x), (ii) the pdf of the input space px(x), and (iii)
the pdf of the observable pŷ(ŷ(x)):

qLW-US(x) = σ2(x)
px(x)

pŷ(ŷ(x))
. (17)

We consider a labeled datasetDcand from which training (tr) pairs {Xtr, ytr} are
selected, and a separate set of inputs {Xinf} for which the model will be deployed
and evaluated during inference (inf). Here, X denotes an infinite-dimensional in-
put field. Because the observable’s true value in the inference setting is unknown
during training, we optimize the selection of training points with respect to the
predicted observable. This affects the output weighting term, which is evaluated
over candidate training points but incorporates knowledge of the output distribu-
tion anticipated at inference time:

We define Mi
S as ith member of a probabilistic ensemble of size n trained

on S = [X1, . . . ,XP ], a subset of P selected training inputs from the full labeled
dataset Dcand. We evaluate the ensemble on both the inputs of Dcand as well as
Xinf to obtain ŷtr and ŷinf , respectively. From these, we get:
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(1) Uncertainty The predictive uncertainty at the candidate training points X
is estimated as the variance of the predicted observable across the ensemble of
modelsMi

S :

σ2(X ) = 1

n− 1

n∑
i=1

(
ŷitr(X )− ŷtr(X )

)2
(18)

(2) Input Probability Estimating the input distribution px is a necessary step in
applying the likelihood-weighted selection criterion, but it is generally intractable
in high-dimensional settings. To address this, we reduce the dimensionality of the
input fields X using weighted Principal Component Analysis (PCA) described in
Appendix A, a widely used and computationally efficient technique in physics-
based applications [11, 81].

The inputs are projected onto the modes ψi of the first k principal components,
yielding a reduced representation x, from which the density px(x) is estimated:

X ≈ x =
〈
X ,

{
ψi

}k

i=1

〉
w
. (19)

The brackets correspond to the inner product operation of the PCA reconstruction,
and the number of components k can selected according to the PCA reconstruction
error based on the decay of eigenvalues. The resulting low-dimensional space allows
for density estimation using a Gaussian approximation, kernel density estimation
(KDE) with a Gaussian kernel, or other suitable methods.

The purpose of estimating the input distribution is to prioritize likely scenarios
in the training set. Although the density is approximated in a reduced space, the
full high-dimensional structure of the inputs can still be represented within the
machine learning model. While we use PCA in this work, other reduced-order mod-
eling techniques can be used, as long as they preserve the key statistical properties
of the input space [17].

(3) Output Probability The density of the observable during inference, pinf, is
estimated using KDE with a Gaussian kernel applied to the model predictions
for the inference set ŷinf. KDE is fast and easy to compute for one-dimensional
variables, and can be further accelerated using Fast Fourier Transform (FFT)-
based methods. This density is then evaluated at the predicted observable for the
training points ŷtr:

pinf(ŷtr(X )) (20)

We note that this density is approximated using predictions for all input samples
Xinf, so the resulting estimate is well-resolved and considered representative of the
predictive distribution of the observable at inference time.

The final selection criterion can be written as

qLW-US(X ) = σ2(X ) px(x)

pinf(ŷtr(X ))
(21)

by modifying Equation 17 according to Equations 18, 19, and 20.
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5 Application to the Majda-McLaughlin-Tabak (MMT) Model

We first apply the described method to the MMT model, a one-dimensional disper-
sive nonlinear wave model that is useful for studying turbulence and rogue waves
[47]. More details on the overall system can be found in Cai et al. [12], Zakharov
et al. [86], Pushkarev and Zakharov [58], Cousins and Sapsis [18], Zakharov et al.
[87]. The system is described by the governing equation

iut = |∂x|αu+ λ|∂x|−β/4

(∣∣∣|∂x|−β/4u
∣∣∣2 |∂x|−β/4u

)
+ iDu (22)

where the output u is a complex scalar representing the wave amplitude, α and β
are parameters of the system, and D is a selective Laplacian that eliminates high
wave numbers. For α = 1/2 and β = 0, the equation can be rewritten in the wave
number space with forcing f(k)

û(k)t = −i|k|1/2û(k)− iλ|û(k)|2û(k) + D̂u(k) + f(k) (23)

where the selective Laplacian is defined as

D̂u(k) =

{
−(|k| − k∗)2û(k) if |k| > k∗

0 if |k| ≤ k∗
. (24)

This operator D̂u(k) prevents wave numbers above a threshold k∗: for small wave
amplitudes, the output pdf appears to be Gaussian, but for large wave ampli-
tudes, the output pdf is very heavy-tailed. The stochastic complex initial condi-
tions u(x, t = 0), which are Gaussian, are obtained from the covariance function

k(x, x′) = σ2
u exp

(
i2 sin2(π(x− x′))

)
exp

(
−2 sin2(π(x− x′))

l2u

)
(25)

with σu = 1 and lu = 0.35, and they are reduced to 2m dimensions, m real and
m imaginary components, using the Karhunen-Loève expansion

u(x, t = 0) ≈
m∑

j=1

αj

√
λjϕj(x), ∀ x ∈ [0, 1) (26)

to transform the original high-dimensional data into a set of orthogonal compo-
nents. In this step, the Karhunen-Loève expansion is the continuous analogue of
PCA described in Section A. The grid is periodic over [0, 1) and discretized into
512 points,m is set to 4, the timestep is dt = 0.001, the parameters of the equation
are λ = −0.5 and k∗ = 20, and there is no forcing, f(k) = 0. As in Pickering et al.
[56] and Guth et al. [31], we seek to train a standard fully-connected NN (FC-
NN) to predict the maximum future wave amplitude over a given time horizon, an
extreme event, as a function of the 2m stochastic initial conditions α⃗

y(α⃗) = ||Re(u(x, T = 50; α⃗))||. (27)
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5.1 Datasets

To better mimic the characteristics of datasets that are found in the real world,
we make use of two datasets: points obtained from inputs that follow a Gaussian
distribution, DpX , and points obtained with Latin hypercube sampling, DLHS .
For Monte Carlo sampling, we select candidate training points from DpX because
this distribution more closely resembles naturally-occurring datasets. As a result,
we compare our proposed method to a more rigorous benchmark (the Monte Carlo
sampling performs worse when applied to points from DLHS). For US and LW-
US sampling, we select candidate training points from DLHS because this dataset
more completely represents all the achievable values, including the tails of the
distribution. We compute the error metrics on DLHS to evaluate the model’s
ability to capture the tails of the distribution.

5.2 Machine Learning Architecture and Active Learning Hyperparameters

The ML model learns a mapping from the initial conditions to the maximum
wave height over a given time horizon. We test both the E-NN and the D-NN
described in Section 3. For the E-NN, we use an ensemble of size 2, and for the
D-NN, we use an ensemble of size 5 (both sufficient as shown in Guth et al. [31]
and Pickering and Sapsis [55]). Even though the size of the D-NN ensemble is
higher, the overall process takes less time because only one model is trained. From
the results of a simple hyperparameter grid search, we set the number of layers
to eight, the number of neurons to 250, the activation to ReLU, the number of
epochs to 3000, and the batch size to the floor of half the number of points in the
training set. For the D-NN, we set the dropout rate to 50%, a value shown to be
effective at estimating uncertainty in Guth et al. [31]. The batch size is the only
hyperparameter that changes at each iteration, and we choose to update the batch
size at each iteration to keep the training error within a reasonable range given a
growing dataset size and a constant number of epochs. We initialize the algorithm
with a training set of 10 randomly chosen points. At each iteration, we add a batch
of 10 points to the training set (points that correspond to the maximum value of
the selection criterion), and we re-initialize the model to avoid getting stuck in
any bad local minima found during early iterations.

5.3 Results

The results obtained from carrying out the algorithm for 150 iterations (up to
1500 points — 1.5% of the full dataset) for randomly chosen points (MC), input-
weighted uncertainty sampling (US), and likelihood-weighted uncertainty sampling
(LW-US) are shown in Figure 3. Because we compute the mean squared error
(MSE) with the Latin hypercube sampling dataset DLHS , we weight the error by
the input distribution as follows

MSE =
N∑
i=1

(yi − ŷi(α⃗i))
2pX(α⃗i). (28)
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The LW-US outperforms MC and US with respect to minimizing the error in the
tail of the pdf, and this is seen again in Figure 4. The E-NN outperforms the
D-NN, but the D-NN training is faster, making it a useful architecture for more
computationally expensive problems.

Fig. 3 Error Convergence Curves of the MMT Predictions. The log of the LPE error
(left) and log of the MSE (right) are plotted as a function of the number of points in the training
set for both the E-NN and D-NN implementations of the MC, US, and LW-US selection criteria.
The shading represents ±1 standard deviation of the five experiments. LW-US (both E-NN
and D-NN) significantly outperforms the other selection criteria with respect to LPE. E-NN
US initially achieves a better MSE, but E-NN LW-US eventually achieves a similar error.

5.4 Interpreting the Selected Points: Multidimensional Scaling

To gain insights into the behavior of the LW-US active search algorithm, we vi-
sualize the eight-dimensional selected input points using multidimensional scaling
(MDS) [19, 20, 42, 43, 69, 75]. MDS projects high-dimensional points to a two-
dimensional subspace with the requirement that a chosen distance metric be pre-
served between points — points that are more spread apart in the original space
must be spread apart in the lower-dimensional space, and vice versa. Here, we
use the standard Euclidian distance as the distance metric. The two-dimensional
projection shown in Figure 4 reveals that points chosen by the LW-US selection cri-
terion are farther apart than points chosen by other selection criteria. The results
of MDS suggest that drawing points that are more “spread out” can be valuable
for predicting extreme events.

6 Application to Debiasing Operator for Coarse-Resolution Climate
Model Outputs

We now apply the likelihood-weighted active selection framework to outputs from
a ML-based climate model to accelerate training and improve the prediction of
extreme weather events [33, 65]. Forecasting future extreme weather events re-
quires the generation of high-resolution climate model outputs for a range of po-
tential scenarios [65, 66, 5, 23, 77]. Historically, such simulations have been pro-
duced from numerical solvers based on physical equations and parameterizations
[78, 48, 50, 83, 21, 73, 26]. However, these solvers must resolve turbulent dynamics
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Fig. 4 Visualization of Selected MMT Input Points. In the top row, the 8D space is
projected to a 2D space with multi-dimensional scaling. Each plot shows the spread of the
optimally selected points in black over the prediction made from the neural network trained
after 150 iterations with training data obtained from MC, US, and LW-US (left to right). The
rightmost plot suggests that points chosen by LW-US are more spread out. In the bottom row,
the predicted pdf is compared to the true pdf after 150 iterations for MC, US, and LW-US,
and LW-US best matches the tail of the distribution.

across scales from millimeters to thousands of kilometers, making them compu-
tationally expensive and reliant on extensive parameter tuning and complicated
closure terms.

Recent advances in ML architectures, algorithms, and hardware have enabled
alternative data-driven climate models [61, 63, 62, 39, 74, 52, 6, 14, 4, 15, 64, 40,
49]. To build on this growing field, we apply our likelihood-weighted selection ap-
proach to a recently proposed debiasing framework [4] that learns a correction op-
erator between low-resolution free-running simulations and high-resolution reanal-
ysis data. This operator improves coarse models without requiring full-resolution
computation. In this setting, the likelihood-weighted data selection framework im-
proves the prediction of extreme weather events in ML climate models. Although
we focus on this particular model, our approach is model-agnostic and broadly
applicable to ML-based climate modeling with large candidate training sets.

6.1 Datasets

The coarse-resolution simulations are obtained from version 2 of the Energy Exas-
cale System Model (E3SM) Atmosphere Model (EAMv2) [21, 26, 82]. The dataset
consists of temperature (T), specific humidity (Q), zonal velocity (U), and merid-
ional velocity (V) at a 1◦ (approximately 110km) resolution, and we only consider
the vertical layer closest to the surface of the Earth. The high-resolution target
dataset is the European Centre for Medium-Range Weather Forecasts (ECMWF)
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Reanalysis version 5 (ERA5) [34]. ERA5 has a resolution of 0.25◦ (approximately
31km), but it is projected onto the E3SM grid for the purpose of this debiasing
framework. For all datasets, we use 10 years of data from 2007 to 2017, sampled
8 times per day.

During training, the machine learning correction model learns a mapping from
the coarse-resolution simulation nudged toward reanalysis (denoted XNUDG) to the
high-fidelity reanalysis fields (denoted UERA5). The nudging procedure is described
in detail in Barthel Sorensen et al. [4]. We define the candidate dataset of potential
training pairs as

Dcand = {(XNUDG,UERA5)}, (29)

where XNUDG are nudged model fields and UERA5 are the corresponding reanalysis
fields. During inference, the trained model acts as a debiasing operator, correcting
free-running (i.e., un-nudged) coarse-resolution simulations under different climate
scenarios (denoted XCR). The inference dataset is

Dinf = {(XCR, ÛCR)} = {(XCR,M(XCR))}, (30)

where XCR are coarse-resolution model fields from a new scenario andM(XCR)
is the model’s debiased prediction. Each sample consists of a snapshot in time of
the full spatial field. The observable of interest, Y, can be extracted from U . To
compute the selection criterion, the dimensionality of the inputs is reduced using

weighted PCA as in Section A with the weight w(ξ) = w(θ, ϕ) =
√

sin
(
90◦−θ
180◦ π

)
.

6.2 Machine Learning Architecture and Active Learning Hyperparameters

The NN architecture, shown in Figure 5, is an encoder-decoder consisting of two-
dimensional convolutional layers. The globe is divided into 25 sections (5 × 5 grid),
the sections are padded to satisfy spherical periodicity (the Earth is a globe),
and the encoding convolutions are applied to each section independently. The
encoder is made up of one layer to split the globe, one layer to spherically pad the
sections, three convolutional layers applied to each section to capture anistropic
local features, and one layer to merge the sections. Next, the decoder applies
“deconvolutional” layers (or transpose convolutional layers) to map the latent
space back to the desired dimension. Finally, the 25 sections are combined to
recreate the full field. The batch size is set to 8, and the number of epochs is set to
150, as was done in [4]. The loss function used to guide the ML optimization is the

MSE for which spatial points are weighted by latitude θ: w(θ) =
√
sin

(
90◦−θ
180◦ π

)
.

The probabilistic architecture is a two-member ensemble neural network. We
initialize the algorithm with a training set of ten randomly chosen points and, at
each iteration, add ten points that maximize the selection criterion to the training
set. For the MC case, we add twenty random points at each iteration because
future iterations do not depend on previous iterations. There are 29,200 (10 years
× 365 days × 8 measurements per day) candidate samples that can be chosen by
the selection criterion, and we only evaluate the method up to 750 points in the
training set (2.6% of all data).

To evaluate the framework, we generate “ground truth” data by training a
model with 100% of the samples in XNUDG and UERA5: we call this model
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Fig. 5 Climate Debiasing Operator Neural Network Architecture. The NN archi-
tecture splits the Earth into sections that are individually passed through convolutional
encoder-decoder layers.

M100. Then, we use the model M100 to make a prediction from the un-nudged
coarse-resolution dataset XCR: we call this predictionM100(XCR). Figure 6 shows
the mean of the reference reanalysis dataset and the mean of the model output
given the test data CR as input. At each iteration, we compute error metrics for
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Fig. 6 Mean of ERA5 and Mean of M100(XCR) for temperature. During the training
phase, the nudged dataset is mapped to the ERA5 dataset. During the testing phase, the
coarse-resolution dataset is provided as input to the trained model.

MS(XCR) with respect to M100(XCR). For each test case, we perform five or
six experiments to evaluate the statistics of the MSE and LPE over the different
experiments.

6.3 Results

We test the method on three cases: (i) the first PCA coefficient for temperature
over the entire globe, obtained using weighted PCA (Figure 7), (ii) temperature
in Paris (Figure 10), and (iii) specific humidity in Ankara (Figure 13). These last
two locations were chosen randomly from a list of cities that have experienced
extreme heat waves (in the case of temperature) or extreme floods (in the case
of specific humidity) in the last few decades. For each example, we plot the true
distribution in green, the predicted distribution obtained from MC sampling in
blue, and the predicted distribution obtained from LW-US sampling in orange.
We also plot a Gaussian distribution with the same mean and standard deviation
as the true distribution, shown as a dashed gray line. When both tails are heavy
or non-Gaussian, we compute the LPE over the full distribution; however, if only
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one tail is heavy (as in the case of humidity in Ankara), we compute the LPE
solely for the half of the distribution corresponding to the heavy tail.

Fig. 7 First weighted PCA
mode of the global temperature
field.
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Fig. 8 The log of the MSE and LPE are shown for MC and
LW-US with respect to predicting the first PCA coefficient
of global temperature. The shading represents ±1 standard
deviation across five experiments.
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Fig. 9 The true pdf (green) of the first PCA coefficient for temperature is compared to the
pdf obtained from predictions made with MC (blue) and LW-US (orange). The Gaussian pdf
is also shown in the dashed gray line. The black vertical line denotes the mean of the true
distribution, and the dashed lines denote ±1σ and ±2σ. LW-US is able to better match the
left tail of the true pdf.

Looking at the LPE as a function of number of points in the training set
in Figures 8, 11, and 14, we see that LW-US outperforms MC in all cases. The
improvement obtained from using LW-US can also be seen in the plots of the pdf
(Figures 9, 12, and 15) — LW-US does a better job at matching the tails of the
distribution, especially in cases where the distribution is non-Gaussian or exhibits
heavy tails. We also observe that the improvement obtained from using LW-US
occurs at a different number of iterations for the different test cases. Looking at
the MSE, the error is similar to MC for cases involving temperature (Figures 8
and 11), but worse for cases involving humidity (Figure 14). However, LPE, not
MSE, is the primary metric of interest in our framework, as it better reflects the
performance on the tails of the distribution. It is not expected that our method
performs well with respect to minimizing the MSE.

6.4 Interpreting the Selected Points: Clustering

Upon selecting the training points, the subsequent goal is to determine if the
points that were chosen by the algorithm have any relevant physical meaning. For
example, scientists could be interested in determining if these points are related
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Fig. 10 Mean temperature in
the region surrounding Paris,
France.
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Fig. 11 The log of the MSE and LPE are shown for MC
and LW-US with respect to predicting the temperature
in Paris given a global model. The shading represents ±1
standard deviation across six experiments.
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Fig. 12 The true pdf (green) of the temperature in Paris is compared to the pdf obtained
from predictions made with MC (blue) and LW-US (orange). The Gaussian pdf is also shown
in the dashed gray line. The black vertical line denotes the mean of the true distribution, and
the dashed lines denote the ±1σ, ±2σ, ±3σ, and ±4σ. LW-US is able to better match the tails
of the true pdf with just 310 points.

to important system dynamics, if they can be attributed to physical phenomena
(e.g., turbulence, atmospheric rivers, tropical cyclones, etc.), or if their physical
interpretation depends on the target’s predicted output. Understanding why the
optimal points were selected also reduces some of the “black box” nature of the
ML-based algorithm.

We present a clustering framework to mechanistically identify and define the
dynamics of these points of interest. Clustering, a form of reduced-order model-
ing in which observations are clustered around centroids, has been used for cli-
mate datasets in other applications [45]. In the case of a dynamic system like the
climate, the observations (or samples) are snapshots in time of the system. We
select cluster centroids from the entire reference dataset of PCA time coefficients
αj(t) =

〈
UERA5, ψERA5

j

〉
w
using the standard k-means algorithm. We set the num-

ber of clusters to six for all cases. The resulting cluster centroids are projected back
onto the PCA modes to visualize the spatial patterns. These cluster centroids are
then used to predict the cluster labels of the new subset of the data chosen by the
algorithm. This step assigns the optimal points to relevant cluster centers which
allows us to determine if the points chosen by the algorithm are associated with
noteworthy dynamical phenomena. The ultimate goal is to interpret the physical
meaning of the points that were chosen for training.

In Figures 16 and 17, the six clusters are mapped in order of most occurring
in the full dataset (Cluster #1) to least occurring in the full dataset (Cluster #6).
For temperature in Paris (Figure 16), we found that points belonging to Cluster
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Fig. 13 Mean specific humid-
ity in the region surrounding
Ankara, USA.
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Fig. 14 The log of the MSE and LPE (over the right tail)
are shown for MC and LW-US with respect to predict-
ing the specific humidity in Ankara given a global model.
Here, we report the LPE for the right tail only, as it ex-
hibits heavy-tailed behavior. The shading represents ±1
standard deviation across five experiments. LW-US is bet-
ter for minimizing LPE, but worse for minimizing MSE in
the case of specific humidity.
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Fig. 15 The true pdf (green) of the specific humidity in Ankara is compared to the pdf
obtained from predictions made with MC (blue) and LW-US (orange). The Gaussian pdf is
also shown in the dashed gray line as a way to assess how heavy each tail is. The black vertical
line denotes the mean of the true distribution, and the dashed lines denote the ±1σ, ±2σ,
±3σ, and ±4σ. LW-US is able to better match the heavy tail (right tail) of the true pdf.

#6 are more relevant to the dynamics of extreme weather events. Upon further
examination, the shape of Cluster #6 suggests a potential heat dome over Paris
and the surrounding region [38]. In the case of specific humidity in Ankara (Figure
17), Cluster #4 contains most of the optimal training points, and the distribution
of points between clusters is significantly more skewed. By applying clustering to
the points selected by the algorithm, we are able to pick out extreme weather
events in an unsupervised way.

7 Conclusions

To address the challenge of training ML models from large, high-dimensional candi-
date datasets, we introduce a likelihood-weighted active data selection framework
that improves the prediction of extreme event statistics. At each iteration, the
framework selects training points using a criterion that emphasizes samples likely
to produce extreme events. The uncertainty in the model is quantified according
to the variance of an ensemble of neural networks, and the dimensionality of the
high-dimensional inputs is reduced using weighted principal component analysis.
The framework is model-agnostic and suitable for high-dimensional datasets. We
demonstrated the success of the framework on both a synthetic problem (disper-
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Fig. 16 Clusters for Temperature in Paris With 310 points in the training set, Cluster
#6 only represents 13.18% of all data but 37.47% of the optimal data. Cluster #6 exhibits
a blocking pattern over most of France. The next most occurring cluster is Cluster #1 that
represents standard zonal flow, typical for normal weather events.

sive wave turbulence) and a real-world problem (a correction operator for coarse-
resolution climate models). In both cases, likelihood-weighted active data selection
achieved a lower error in the tails of the probability distribution with fewer train-
ing points. In the real-world problem, clustering showed that the method was
selecting points relevant to extreme weather events. Down the line, the developed
approach has the potential to be used as a compression algorithm that preserves
the information associated with extreme events in vast datasets.
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Fig. 17 Clusters for Specific Humidity in Ankara With 310 points in the training set,
Cluster #4 only represents 13.93% of all data but 96.32% of the optimal data. The next most
occurring cluster is Cluster #1. Between 310 points and 750 points, more points are chosen
from Cluster #1.
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A Weighted Principal Component Analysis for High-Dimensional
Systems

Our input data consists of high- or infinite-dimensional fields, which makes direct estimation
of input densities intractable. To overcome this, we first reduce the dimensionality of the input
space using weighted principal component analysis (PCA) or, when the covariance function is
known a priori, a Karhunen–Loève decomposition.

Formally, let x(ξ, t) denote a vector field defined over a spatial domain indexed by ξ, with
temporal mean x(ξ). We define the centered field

z(t, ξ) = x(t, ξ)− x(ξ),

and represent it in terms of orthonormal spatial modes {ψj(ξ)}kj=1, weighted to respect the

domain geometry:

z(t, ξ) =

N∑
j=1

αj(t)ψj(ξ),

where αj(t) are time-dependent PCA coefficients, and k is the number of retained modes.
To incorporate the spatial geometry, we define a weighted inner product:

⟨x1,x2⟩w =

∫
ξ
w2(ξ)x1(ξ)x2(ξ) dξ,

with a spatial weighting function w(ξ). For example, the MMT application uses uniform weights
w(ξ) = 1 whereas the climate application accounts for spherical geometry by choosing

w(θ, ϕ) =

√
sin

(
90◦ − θ

180◦
π

)
,

where θ and ϕ denote latitude and longitude, respectively.
The covariance operator is estimated by time-averaging:

R(ξ1, ξ2) =
1

T

∫ T

0
z(t, ξ1)z(t, ξ2) dt ≈

1

nt
ZZT ,

where Z ∈ RN×nt is the snapshot matrix. The PCA modes ψj can be found by solving the
eigenvalue problem

⟨R(·, ξ), ψj(·)⟩w = λjψj(ξ),

with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λnx ≥ 0.
The PCA coefficients are computed as projections:

αj(t) = ⟨z(t, ·), ψj(·)⟩w.

The primary purpose of this dimensionality reduction is to enable the use of the data
selection algorithm even for systems with very high-dimensional inputs, by projecting the
input field onto a lower-dimensional basis that facilitates density estimation. Additionally, the
same methodology allows us to define a scalar observable y by selecting appropriate modes or
functions ψ. For example, if the quantity of interest is the first PCA coefficient, we set j = 1;
alternatively, ψ may represent spatial averages, maximum values, or values at specific points.
In such cases, we use ⟨x, ·⟩ to denote the corresponding extraction operator.

In our applications, this manifests as follows: In the climate modeling application (Sec-
tion 6), weighted PCA is used first to reduce the input field dimensionality from the low-
resolution climate model output. Optionally, it is also used to define the scalar observable
y when this corresponds to a dominant mode of variability. In the MMT application (Sec-
tion 5), the input initial conditions have a known covariance function and are obtained from
a Karhunen–Loève expansion (equivalent to PCA under these conditions). In both cases, this
approach projects the high-dimensional spaces onto a reduced basis, enabling a tractable eval-
uation of the input probability density and a flexible definition of the observable. In general,
we note that the ML models themselves remain high-dimensional.
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37. Katsidoniotaki E, Guth S, Göteman M, Sapsis TP (2025) Reduced order modeling of wave
energy systems via sequential Bayesian experimental design and machine learning. Applied
Ocean Research 155:104439, DOI 10.1016/j.apor.2025.104439, URL https://linkinghub.
elsevier.com/retrieve/pii/S0141118725000276

38. Kautz LA, Martius O, Pfahl S, Pinto JG, Ramos AM, Sousa PM, Woollings T (2022)
Atmospheric blocking and weather extremes over the Euro-Atlantic sector – a review.
Weather and Climate Dynamics 3(1):305–336, DOI 10.5194/wcd-3-305-2022, URL https:
//wcd.copernicus.org/articles/3/305/2022/

39. Keisler R (2022) Forecasting Global Weather with Graph Neural Networks. URL https:
//arxiv.org/abs/2202.07575

40. Kochkov D, Yuval J, Langmore I, Norgaard P, Smith J, Mooers G, Klöwer M, Lottes
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