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ABSTRACT

The ability to model 4D properties of near-coast ocean regions in real time is valuable for both general
environmental monitoring and for specialized industry applications. We present a computationally parsimo-
nious framework to build improved spatiotemporal models that combine dynamics inferred from historical
high-fidelity model outputs and real-time sensor measurements. We are motivated by a temperature data set
of the Massachusetts Bay from sensors that can only obtain measurements at the ocean’s surface. We first
apply standard principal component analysis (PCA) to a historical reanalysis data set of the time-evolving 3D
(x,y,z) temperature field. Next, we train a temporal convolutional neural network (TCN) to predict the time
coefficients of the vertical PCA modes, and their variance, as a function of surface temperature. Simultaneously,
we estimate the time-evolving 2D (x, y) surface temperature field from the satellite and buoy measurements
with multi-fidelity Gaussian process regression (GPR). Finally, the surface temperature is used as input to the
neural network to probabilistically predict the PCA coefficients and reconstruct the full 4D temperature field.
The results are compared to in-situ measurements at all depths, and the median absolute error is found to
be 0.97 °C. Overall, the proposed framework is able to produce more accurate models in less time, and the

uncertainty quantification can be leveraged for future decision-making.

1. Introduction

Access to fast and inexpensive regional near-coast ocean models is
crucial: fisheries need these models to make decisions about aquacul-
ture, engineers to design near-coast systems, policy makers to monitor
changes in the ocean, and so on. Creating models from the high-
dimensional nonlinear equations that describe the physics of the ocean
requires complex and computationally expensive numerical solvers.
Even with advanced numerical methods such as finite volumes or finite
differences (first done for a full coastal region in [1]), uncertainty in the
boundary, initial, and excitation conditions and intrinsic instabilities
in the system can produce errors [2]. High-resolution, high-accuracy
physics-based numerical simulations require vast computational re-
sources, making forecasting and nowcasting, or even rapid hindcasting,
out of reach. Alternatively, stakeholders can turn to real-world in-
formation on quantities of interest from physical sensors (e.g. buoys,
drifters, conductivity-temperature-depth (CTD) instruments, and satel-
lites). However, sensors only provide information about a system lo-
cally in space, with significant gaps, or with a high degree of sparsity,
and the purchase, operation, and maintenance of sensors is financially
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expensive. In a hybrid approach called data assimilation, measurements
from sensors can be used to complement or improve numerical models,
but such hybrid methods still suffer from insufficient instruments and
costly computational needs. Overall, numerical methods, sensor mea-
surements, and data assimilation form the actively-researched fields of
ocean modeling and ocean monitoring.

One specific research problem of interest within ocean modeling
involves the development of methods to predict subsurface ocean tem-
perature from surface measurements [3]. Many methods have been
developed to address this problem: both Carnes et al. and Nardelli
et al. used empirical orthogonal functions from climatology data sets
to infer subsurface temperature from satellite data [4,5]; Guinehut
et al. (2004), Guinehut et al. (2012), and Wang et al. (2012) all led
efforts to combine in-situ Argo measurements with satellite data [6—
8]; Wang et al. (2013) integrated satellite data into a quasigeostrophic
ocean model [9]; Li et al. assessed the accuracy of using a finite vol-
ume model to predict bottom water temperatures [10]; more broadly,
Klemas and Yan discussed challenges related to incorporating surface
sensor measurements into ocean models [11]. Significant research has
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been undertaken to predict sought-after subsurface properties. More
recently, advancements in machine learning have allowed for new
inference methods: researchers have explored using different neural
network architectures to map surface measurements to historical ver-
tical profiles from in-situ observations (ie. Argo drifters or CTDs) [12—
14]. More generally, some of the aforementioned methods were applied
to other ocean properties [15-18]. The motivation behind this open
research question is that surface measurements are cheaper and more
readily available than subsurface measurements: buoys and drifters are
less expensive to operate at or near the surface of the ocean, and
satellites can only collect sea surface temperature (SST) but cover large
domains. However, even surface sensors present challenges: buoys and
drifters are scarce, and satellites are unable to make measurements in
the presence of cloud coverage. Temperature profiles from instruments
such as the Argo drifters are plentiful and publicly available but do not
exist for near-coast regions.

In this paper, we propose a new method that is able to quickly
and parsimoniously predict regional temperature in 4D (x, y, z,f) with
uncertainty estimates at a high resolution and in real time from nothing
but surface measurements. The goal of this work is different from
traditional and direct, comprehensive ocean modeling efforts. Our aim
is to make use of existing reanalysis data obtained from previously-
simulated physics-based and observation-driven ocean models to more
rapidly and inexpensively make predictions at recent or current time
steps. We take advantage of existing historical reanalysis data from the
specific region of interest to characterize the vertical structure of the
ocean temperature field in that region. Subsequently, we use machine
learning methods to reconstruct and hindcast the full 4D temperature
field and its uncertainties from real-time surface temperature sensor
measurements. We intentionally choose to use probabilistic machine
learning methods so that we can produce estimates for the uncertainty
associated with both the system and the model. We consider tem-
perature data because they are widely available, but the techniques
discussed can be applied to other quantities of interest such as salinity,
total alkalinity (TA), dissolved inorganic carbon (DIC), aragonite, and
pH.

To demonstrate the effectiveness of our proposed method, we model
temperature in the Massachusetts and Cape Cod Bays. These bays
correspond to a region with great biodiversity (fish, shellfish, whales,
etc.) and significant fishing and tourism industries. The ability to
predict temperature in this type of coastal area is helpful in assessing
general ocean health, tracking ecosystem functioning, and managing
fisheries [19-21]. The final product is integrated into the online SEA-
GLASS visualization tool, a web application for ocean data that is
developed by MIT Sea Grant and is accessible to local stakeholders
(e.g. fisheries, NGOs, students, etc.). The visualization tool receives
surface measurements in real time from both internal databases and
external APIs, which is why it is important that the model be able
to quickly and seamlessly manage new unprocessed data sets as they
become available. The model is also useful to make decisions about
where and how to sample future data [22,23] and to evaluate the
quality of new sensors. Sections 2 and 3 describe the different types of
data that are used to train and evaluate the model. Section 4 explains
the steps of the framework. Section 5 presents the real-world results of
the model.

2. Reanalysis data

Our starting point is a reanalysis data set consisting of a time-
evolving 3D temperature field of the Northeast Coastal Ocean from the
Finite Volume Community Ocean Model (FVCOM) by Chen et al. [24,
25]. FVCOM uses a fractional step method to solve the spatially and
temporally evolving fields for velocity, density, temperature, and salin-
ity, among other variables over an unstructured grid with a horizontal
resolution of approximately 0.1-25 km over 45 sigma levels (higher
resolution closest to the coasts). Here, a sigma level refers to a layer
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of the sigma coordinate system. In the sigma coordinate system, hori-
zontal layers follow the model terrain, so for a given (x, y) point, each
horizontal layer has the same thickness [26]. This coordinate system is
a convenient way to discretize the domain because it results in a con-
tinuous temperature field. In the data assimilation step, FVCOM uses
observations from satellite sea surface temperature and radiation, river
discharge, NOAA C-MAN and NDBC buoys, and NERACOOS buoys.
A study by Li et al. found that the model agreed well with in-situ
measurements with a root mean squared error of 2.28 °C [10]. The
entire hindcast ranges from the Delaware Shelf to the eastern end of the
Scotian Shelf over several decades, but we only consider a truncated
portion of the domain in the Massachusetts and Cape Cod Bays from
January 2005 to December 2013 (9 years total). As an example, a
snapshot of the data from September 13th, 2012 at sigma level —0.5 is
plotted in Fig. 1. In the spatial domain of interest, the maximum depth
reaches 200 m, but most of the points are within 0 and 50 m.

3. Measurements and observations

In addition to the data from the finite volume scheme, we have
surface temperature data from physical sensors: satellites and in-situ
stations. Satellites measure sea surface temperature by measuring the
amplitude of the infrared and microwave wavelengths from the electro-
magnetic radiation emitted by the ocean’s surface. Different satellites
operate at varying resolutions and levels of accuracy [27], but the
main challenge associated with using satellite data is that there can
be gaps due to cloud coverage. There exist many SST data products:
e.g. Optimal Interpolation SST, Hadley Centre Global Sea Ice and SST,
Climate Change Initiative SST. Each of these has a different spatial and
temporal resolution, some of which are not sufficient for the region
of interest in this study. Furthermore, for decision-making purposes,
we are interested in using a SST product that includes uncertainty
estimates. For the region of interest, we have access to unprocessed
daily satellite imagery from the MODerate-resolution Imaging Spectro-
radiometer (MODIS) Terra. In Fig. 2, we observe that each day has
a different amount of cloud coverage. Most importantly, many days
during winter months have no available satellite measurements. In
contrast to satellites, in-situ stations and buoys are not affected by cloud
coverage. Measurements are available from the Massachusetts Water
Resources Authority (MWRA) (Fig. 2), but they are only collected on a
monthly basis, and there are only 14 stations with consistent data. The
MWRA stations gather data by collecting samples of water at multiple
depths and directly measuring the temperature. While this method is
more accurate, it is also very costly. We only use surface measurements
to train the model, but we use MWRA measurements at a variety of
depths to assess the quality of our model during the evaluation stage.

4. Framework description

The framework is organized into multiple steps as outlined in Fig. 3.
Steps 1 and 2 are independent while Step 3 relies on the completion of
Steps 1 and 2. Furthermore, Step 1 only needs to be completed once
while Steps 2 and 3 need to be repeated each time new measurements
become available. First, in Step 1, we use the reanalysis data to build a
data-driven reduced order model and derive a functional relationship
between 3D temperature and surface temperature; this connection is
possible given the reduced-order vertical structure of the problem that
we obtain from principal component analysis (PCA). Next, in Step
2, real-time information from satellites and in-situ buoys is prepro-
cessed and interpolated to estimate the full ocean surface temperature
field. We choose to interpolate with multi-fidelity Gaussian process
regression (GPR) as described in Babaee et al. [28], but other SST
products (introduced in Section 3) may be used. We reuse most of the
methodology from Babaee et al. but we modify the choice of inputs
to speed up the process to cover a larger domain. Finally, in Step
3, we input the real-time 2D surface temperature measurements into
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Fig. 1. Reanalysis Data of the Northeast Coastal Ocean from FVCOM. In the left panel, the high resolution of the FVCOM temperature field is demonstrated for September 13th,
2012 at sigma level —0.5. The right panel shows the contour map of the bathymetry of the region of interest.
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Fig. 2. Sensor Data. The low fidelity data (satellite (left)) are only available on days with low cloud coverage. The high fidelity data (buoys (right)) are local in space and sparse.
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Fig. 3. Framework. Flow chart describing the developed framework for real-time estimation of the 4D ocean temperature field. Reanalysis data are used to estimate a reduced-order
model. Ocean surface information, obtained from satellite and buoy measurements, are used as input.
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the reduced-order model to obtain a real-time estimate for the time-
evolving 3D temperature field and its uncertainty. The framework can
be modified or rearranged based on the type and location of available
data.

4.1. Temperature field order-reduction using vertical PCA

We first apply standard principal component analysis (PCA) to the
reanalysis data set to reduce the dimensionality while retaining patterns
and information. PCA, also known as empirical orthogonal functions
(EOF), proper orthogonal decomposition (POD), or Karhunen-Loéve
decomposition, among other names, has long been used in many fields.
In the context of fluid mechanics, weather prediction [29,30], and
oceanography, PCA extracts features or trends from large empirical
data sets to accurately reconstruct the dynamics of the system using a
small number of EOFs and corresponding coefficients. Significant work
has been done on the use of EOFs to reconstruct spatio-temporal SST
for which empirical measurements from sensors are available [31-34].
In some cases, the basis is used to fill gaps in the data [35]. Here,
we use PCA to represent the vertical structure of existing reanalysis
data with just a few modes at each location of the ocean surface. We
are interested in the vertical structure of the temperature field because
most of the energy of the system is coming from solar radiative flux
which is normal to the surface of the ocean, and the vertical modes
capture vertical mixing and diffusion. Because we are only considering
a regional coastal section of the ocean for which the dynamics are
primarily driven by surface forcing, it is a reasonable assumption to
only use a few modes. Furthermore, it can be proven that PCA results in
an optimal orthogonal transformation that captures maximum variance.

At each horizontal location i, (x;,y;), the temperature field is dis-
cretized into n depths and m time steps.

T(zy,ty) T(zq,1,)
1o |TE2t) o TGat) i
T(Zn’tl) T(Zn’tm)

Using this data matrix, we evaluate the eigenvectors.
T T ¢, = Apjj=1.....n 2

Finally, for each location i, the subsurface structure of the temperature
is represented using two vertical modes and a mean temperature mode.

2
T, o (0 = D ;0 + Ti0) ©)
j=1

The eigenvalues obtained from the decomposition confirm that we have
a low rank problem as the first two modes capture more than 85% of
the data’s energy and are sufficient for reconstructing the temperature
field (Fig. 4). The spatial modes ¢;; represent the vertical structure of
the field and vary with respect to the horizontal location. The first mode
roughly corresponds to the difference between the surface temperature
and the temperature at depth while the second mode corresponds to
the extent of the mixing layer (Fig. 4). The coefficients ¢,;(r) and mean
temperature T;(r) are functions of time and are extracted from the
reanalysis data set via projection. The vertical temperature profiles of
three (x;,y;) locations in Fig. 5 suggest that there is good agreement
between the original reanalysis and the reduced-order PCA projection.
For time steps during which there is no full 3D information, a functional
relationship between surface information and PCA coefficients needs to
be determined. This is the scope of the next section.
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4.2. Machine learning functional relationships between PCA coefficients
and surface temperature

In the most important step of our framework (Step 1), we use
machine learning to map surface temperature to subsurface temper-
ature. Recent developments in machine learning have increased the
popularity of using neural networks to model such geophysical pro-
cesses. As discussed in the Introduction (Section 1), different neural
networks (perceptrons [12,14], LSTM [13]) have been used to map
surface observations to vertical temperature profiles. More generally,
neural networks that are specifically designed for time series analysis
are increasingly being used to predict the time-varying PCA coeffi-
cients obtained from geophysical data sets [36,37]. Many of these
papers focus on large domains of the open ocean or on geophysical
applications that are different from 4D ocean temperature. Here, we
choose to focus on a near-coast regional ocean model, and we use high-
resolution reanalysis data for training. We choose machine learning
models with probabilistic modeling capabilities for uncertainty quan-
tification and neural network architectures that are well-suited for time
series analysis.

For each horizontal location i, (x;, y;), we train a neural network to
learn a functional relationship between surface temperature (for which
sensor measurements are more readily available) and the subsurface
vertical structure of ocean temperature (which we wish to predict at
new time steps in the form of PCA time coefficients g; () and mean
temperature T;(r) obtained in the previous section). This step of the
framework takes the most time but only needs to be performed once.
We also build a second neural network to predict the associated stan-
dard deviation and estimate the uncertainty of our predictions. These
uncertainties exclusively model the error made by the neural network
in modeling the vertical PCA coefficients. More specifically, we build a
temporal convolutional network (TCN), a type of convolutional neural
network (CNN) that performs convolutions on one dimensional time
series data. Unlike a traditional CNN, a TCN is causal which is useful
for modeling dynamic systems [38]. TCNs have also been shown to
outperform recurrent neural networks for sequence modeling [39,40].

We adapt the Stochastic Machine Learning (SMaL) code from Wan
et al. and retain the same residual block architecture (Fig. 6) [38]. The
data are standardized before training for improved results. The batch
size of the neural network, which is the number of samples that are
used in a training set during one pass, is set to 5 because a smaller
batch size is better for model generalizability. The filter width is set to
2. In a standard CNN, a small filter width results in a small receptive
field (receptive field refers to the amount of data that contribute to a
feature of the neural network). In a TCN, the dilation factor is doubled
at each depth to cover many different time scales, so the receptive
field becomes larger. The small filter width thus reduces computational
costs and improves generalizability. The dropout layer of the neural
network is set to have a probability of 0.5 for regularization. This
means that each weight has a probability of 0.5 of being ignored in the
network, so the weights become decorrelated. The depth of the network
corresponds to the number of nonlinear activations. From the results of
numerical experiments, a depth of 6 layers resulted in the lowest test
error to adequately represent the underlying physical phenomena.

4.2.1. Loss functions for neural network training

Typically, the weights of a neural network are obtained by minimiz-
ing a loss function J(0) that quantifies the error between the true data
and the model predictions.

IO = 7 ¥ LGO) - ). @

Here, we build two neural networks at each location i, (x;,y;), one
for the mean and one for standard deviation. We emphasize that each
horizontal location is treated separately to account for spatial inhomo-
geneities. We train each network sequentially because we require the
mean prediction to train the second neural network for the standard
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coefficients obtained by projection of the reanalysis temperature field (bottom left), and first two vertical modes (bottom right) at one (x;, ;) location.
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Fig. 5. PCA Vertical Profiles. The vertical profiles of the reanalysis data and the PCA projection are shown for September 13th, 2012 at three different (x;,y,) locations.

Corresponding locations are shown on the map in Fig. 7.

deviation. Furthermore, we optimize different loss functions for each
network. To predict the mean of the PCA coefficients, we minimize
the mean absolute error (MAE), a standard loss function for neural
networks.

1 N
JMAE=;Z|J’—Y|- 5)

To predict the standard deviation of the PCA coefficients, we minimize
the mean negative anomaly correlation coefficient (MNACC) [38]. It is
a correlation-based loss function, so it does not scale with magnitude,

therefore more effectively penalizing anomalies.
1 z Yz~ [2])(z - [z])
VEE - 2D2VE(E - 212

z=y-y*/ %)

(6)

Junace =

Here, the reference y’¢/ is the cyclic mean, and for ocean temperature
it corresponds to the annual variation due to seasons. Without a refer-
ence, this loss reduces to the Pearson correlation coefficient, another
standard loss function in many machine learning applications.



B. Champenois and T. Sapsis

normal convolution

T | T | T T | T, | input

! 0 ! filter

residual block (K, d)
dilated causal
convolution (K, d)
'

ReLU
+

Physica D: Nonlinear Phenomena 459 (2024) 134026

input T, T, ..., T
residual block (K=2, d=1)
'
residual block (K=2, d=2)
)

n

Ty | TP THT | THT | THT ) T, | output

convolution K=1

T T, T, T, T, T, | input

1 0 1 filter

T T5 T, T, |THT TAT, | output

dropout residual block (K=2, d=4)

'

residual block (K=2, d=8)
|

RelLU residual block (K=2, d=16)
; |

residual block (K=2, d=32)

!

outputq, q,, ..., q,

dilated causal
convolution (K, d)
+

D ASEEEE— dropout

Fig. 6. Architecture of TCN. The TCN is built with residual blocks that consist of a sequence of two convolutional layers with ReLU activation and a dropout. The dilation factor

of each residual block is doubled at each depth.

42.6
42):’”

424 x.

-708 -70.6 -704 -702 -70 -708 -70.6

-704 -702  -70 -708 -70.6 -704 -702 -70

Fig. 7. Input Points. The input of the neural network consists of the surface temperature at four nearby points in addition to the surface temperature at the corresponding point

of interest. Different radii, shown here, are tested through numerical experiments.

4.2.2. Choice of number and location of input points

While the weights and biases can be found by optimizing a loss
function, other parameters of the neural network need to be fine-tuned.
For example, the choice of input points affects the output of the neural
network. Many ocean models treat the ocean as being stratified, so
these models do not include interactions in the horizontal direction.
To more comprehensively include all dynamic interactions, we produce
a non-local parametrization by including neighboring points in the
input of the neural network. The FVCOM model uses an unstructured
grid, so we select the neighboring points by choosing a radius 4 and
computing the points (x + 4,y), (x — 4,), (x,y + 4), and (x,y — 4).
Then we find the points in the data set that are closest to the points
computed in the previous step and assign those to be the neighbors of
the point of interest. For points that are near the boundary, we use the
same algorithm with the knowledge that the selected neighbors will
also be along the boundary. While this is not the ideal solution, it is
acceptable because the neural network will learn a new parametrization
given the available neighboring points. To find the number and location
of input points that are best suited for generalizability, we perform
numerical experiments by minimizing the mean squared error using
grid search. We first test the neural network with one, two, three, and
five neighborhood input points. Then, we experiment with the distance
between the input points and the point of interest. After completing
the experiments, we choose the number of points and distance between
points that result in the lowest testing error. We perform these exper-
iments on three (x;, y;) pairs in the neighborhood domain, denoted A,
B, and C in Fig. 7, and we adopt the same parameters for the models of
all other (x;,y;) pairs. From the results of the numerical experiments,
we build the inputs of the TCN with the surface temperature of four
additional nearby points for which the distance is between nine and ten
kilometers. These points all correspond to (x;, y;) pairs in the reanalysis
data set.

4.2.3. Choice of memory for the neural network

The temporal convolutional network also has parameters associated
with the dynamics in time, i.e. how much memory from the input
should be retained in order to achieve the best prediction. Starting with
time series arrays of surface temperature, T, PCA coefficients, ¢, and
¢», and mean temperature, T,

x=[Tstg) Tst) Ts(ty) .. Ts(1,)] ®
a () at) q) . q@,)

y=|at) @) @b .. e, 9
T4y Ta) Ta) .. TG,

we build matrices of smaller sequences on which we apply the convo-
lutional filter.

[ T50)  Tst) Ts(t,)

wren = | T Tsl) o Tl 10
Tstuy) Tg(t,)
[ q;(ty) q;(t) q;(t,)

Yren = qi(’s) qi(ls+1) qi(’s+m) an
_qi(t,,,m) q;(t,)

When building these smaller sequences, we have the ability to choose
how much data to use which affects the performance of the neural
network. The sampling rate determines how many time steps to skip
within an input time series, the stride, s, determines how many time
steps to skip between each successive time series, and the memory
length scale, m, determines how many points back in time to consider
in one time series. Again, we perform numerical experiments to find
the values for these parameters that result in the lowest testing error
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Table 1
Evaluation of neural network model on reanalysis data set.
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y (target) ¥ (output) MAE (°C)

RMSE (°C)

Train Val.

Test Train Val. Test

FVCOM TCN
PCA TCN

0.2088
0.1942

0.2999
0.2846

0.3185
0.3078

0.3552
0.3359

0.4961
0.4777

0.5470
0.5364

(Tables B.2, B.3). The memory length scale is set to be 20 days, and
the sampling rate and stride are both set to 1 day. In our final model,
each PCA coefficient is predicted using the surface temperature from
all of the data from the 20 previous days, a choice that is consistent
with ocean time scales [41].

4.2.4. Results of the neural network training

By using additional nearby points ((x;, y;) pairs in the reanalysis data
set) and previous time steps, we create a non-local parametrization in
both space and time. To train a neural network, the inputs are typically
split into training, validation, and testing sets. The training inputs
are used to optimize the weights of the model, the validation inputs
are used to select the best hyperparameters (number and location of
inputs, memory, neural network depth), and the test inputs are used to
evaluate the model on unseen data. The neural network for this model
is built using four years of data for training (mid 2005-mid 2009), one
and a half years for validation (mid 2009-2011), and two and a half
years for testing (2011 until mid-2013) (Fig. 8). The predicted time
series for a representative horizontal location, as well as the predicted
standard deviation, are shown in Fig. 8. Fig. 8, confirms that the first
PCA coefficient (8a) captures the warming of the surface while the
second PCA coefficient (8b) captures smaller scale effects which are
most likely due to the depth of the mixing layer. Both PCA coefficients
go to zero during the winter, and the overall uncertainty is also lower
during the winter.

These raw outputs are combined with the PCA modes to reconstruct
the full 4D temperature field. Table 1 lists the error associated with the
neural network predictions relative to both the original reanalysis data
and the PCA reconstruction.

The model does not perform equally for all (x;, y;) locations, but the
total root mean squared error for the test data is 0.55 °C. Figs. 9, 10,
and 11 compare the reconstruction to the original reanalysis data set for
a time step in the test set (not seen during training). Fig. 10 shows the
horizontal reconstruction at four depths and confirms that the neural
network is able to learn and replicate the physical structures. Fig. 11
shows the vertical reconstruction at a fixed longitude to explain which
depths are more difficult to model with PCA and a neural network.
Figs. 9 and 11 show that the agreement between the original reanalysis
data and the TCN prediction is worse at the surface, but the associated
uncertainty is also higher. Table 1 also reveals that the test error is
higher than the training and validation errors which is expected in
many machine learning applications. In this problem especially, the
testing data come from a future time period with more warming than
any of the time periods seen in the training and validation sets.

For each (x;, y;) pair, it takes one minute to train a neural network
on a standard CPU. Once the neural network is fully optimized, it
only takes a few seconds to make a prediction. While we did choose
to dedicate some time to tune the hyperparameters of our model, we
found that this neural network architecture is robust to variance in
design choices (within a reasonable range). TCNs require less parameter
tuning than standard computational fluid dynamics models and can be
used by non-experts to achieve quick and high-resolution results.

4.3. Filling gaps in the surface sensor data

The next step in the framework is to estimate the full time-evolving
2D surface temperature field. Satellites measure SST, but they are
frequently affected by cloud coverage. To overcome this problem, there
exist methods that enhance measurements from satellites and blend
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data from multiple satellites [42,43]. In many projects, measurements
from in-situ buoy are used to either validate or improve the accuracy of
models [27,44-49]. Gaussian process regression (GPR), which is similar
to optimal interpolation or objective analysis, is one approach that has
been shown to produce quick, accurate, and useful results [28,50].
Babaee et al. use multi-fidelity GPR, a modified version of GPR, to
combine measurements from satellites and buoys with the assumption
that buoys have a higher fidelity than satellites [28]. We follow this
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implementation because we want to use real-time satellite data from a
publicly available NASA API, and we want our model to be adaptable,
even in the presence of cloud coverage. Details about the implemen-
tation of GPR and multi-fidelity GPR are outlined in Appendix A. One
challenge of using GPR is that it requires matrix inversion, so it does
not scale well with the size of the data set or the dimension of the input
space. Because we are interested in predicting the temperature over the
full spatial domain, we must reduce the size of the data set.

To address the challenge of scalability, we apply three modifications
to the framework described in Babaee et al. First, we set the prior of
the mean function to be the daily spatial mean (Fig. A.15). Next, we
keep the size of the data set small by building a new GPR model for
each time step and setting the input data to be the available data on
the day of interest, the day before, and the day after. In other words,
we only use data from three days to predict the surface temperature for
one day, and we repeat this process for all time steps. The features for
each time step k are

Xi Vi Tk-n X;

X ¥ 4o |=[x w O 12)

Xi Vi Tkt x|
where (x;, y;) are all of the available spatial points at each time step
k. Finally, to prevent overfitting and to generalize the models, we
manually set the hyperparameters to be the same for all days. For
days with no available measurements, we take the average over 10
days (5 previous and 5 following days). For the spatial lengthscales,
we choose a value of 0.25 degrees or roughly 25 kilometers, which is
equivalent to six “gridpoints” or “pixels,” where one gridpoint is the
spatial resolution. This choice assigns more weight to spatial points that
are within 25 kilometers of the point of interest which corresponds to
the mesoscales of the ocean [41]. For the time lengthscale, we choose
a value of one day. Finally, we choose to set the noise variance to ¢, =
0.1, and we set the signal variance to ¢, = 0.3 by taking the average
of the values found from minimizing the objective function over all
submodels. For consistency, we set p and u,, the hyperparameters
associated with the multi-fidelity method, to be the same as those from
the optimized model in Babaee et al. [28]. Because we use less data at
each time step, our model is significantly faster at making predictions,
robust to larger domains, and therefore more practical for real-time
modeling. It is also different from the model in Babaee et al. because it
estimates the full surface temperature rather than just the temperature
at select locations.

4.3.1. Results of surface temperature extrapolation

For points at which sensor data are available, we keep the original
data, but for points at which there are no measurements, we use the
method described in the previous section. The results of the extrap-
olation are shown in Fig. 12 both for a day with high cloud coverage
(March 8th, 2016) and for a day with minimal cloud coverage (Septem-
ber 13th, 2016). As expected, the uncertainty of the extrapolation is
higher in regions with more cloud coverage.

5. Results and evaluation of the full 4D temperature field

Finally, we use the real-time estimate for surface temperature ob-
tained from GPR as input to the TCN to obtain the PCA coefficients and
the mean temperature, as well as their uncertainty, at each horizontal
location for the day of interest. To achieve this, we build a time series
of surface temperature at each point of interest, and we individually
predict the PCA coefficients for each of these surface temperature time
series. The spatial resolution of the model over longitude and latitude
can be chosen during the GPR step, but for simplicity, we choose to
use the spatial resolution of the satellite data (4 x 4 km). We adopt the
methodology described in 4.2.2 to select the neighboring points. The
neural network predictions from the real-time sensor measurements are
plotted in Fig. 13 for 2015 and 2016, and the standard deviation of
the predictions is represented as red shading. Like in Fig. 8, the first
PCA coefficient captures the general warming trend, the second PCA
coefficient captures smaller scale effects, and the overall uncertainty is
lower during the winter (Fig. 13).

The predicted PCA coefficients are then projected onto the de-
terministic PCA modes and summed with the predicted PCA mean
to reconstruct the full 4D temperature and uncertainty fields. When
estimating surface temperature, we left out measurements from three
stations (N04, F13, F29 from Fig. 2). We evaluate the results of our full
model by comparing the predictions from the neural network to these
withheld in-situ measurements that were never seen during the training
phase.

The time series of the predicted temperature for stations NO4,
F13, and F29 are shown in Fig. 14 at multiple depths with asso-
ciated uncertainty bounds. We compare the accuracy of our model
to the climatological mean (the average daily mean calculated from
the reanalysis data set over all 9 years), and we find that the model
performs well for most points, but the predictions are worse for points
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is shown for shallow (~1.5 m) and deep (~48 m) water in the bottom two panels.

that are near estuaries or other unusual geographic or human features
(e.g. station F13). Fig. 14 also includes the percentage of satellite
coverage for each day (red dots), and we observe that the model
performs best for days with the most amount of available satellite data
(80%-100%). Specifically, the mean absolute error of our predictions
is 1.37°C, the median absolute error is 0.97°C, the root mean squared
error is 1.73°C, and 79% of predictions fall withing two degrees of the
truth. This root mean squared error is lower than the 2.28 °C found
by Li et al. for FVCOM [10], but this comparison is incomplete given
that the errors were calculated for different locations and time periods.
We emphasize the favorable performance of the model with regards to
bias elimination (Fig. 14). At the same time, it is important to note that
the model has a more difficult time capturing the large temperature
outliers (measurements that are significantly different from nearby-in-
time measurements), but this observation is not a surprise as these
differences may be caused by features that are not included in the
current model (e.g. rivers, rainfall, and currents). The modeling of such
extreme variations is a topic of high importance, and we leave it for
future work. The accurate modeling of such features could be improved

10

not only by incorporating information about flow, rivers, and rain-
fall, but also through targeted observations based on the uncertainty
quantification skill of the presented approach.

6. Conclusions and future work

We introduced a fast and accurate framework, based on recently
developed machine learning techniques and reanalysis data obtained
from comprehensive ocean models, to reconstruct 4D ocean tempera-
ture fields from real-time sensor measurements of surface temperature.
We compared the results from our framework to in-situ measurements,
and we found that the error associated with our predictions is com-
parable to that of other state of the art models that are significantly
more expensive. In the future, we plan to use our model’s estimates
of uncertainty to make decisions about the system, a process often
referred to as active sampling or optimal sampling. For example, we can
define and optimize an acquisition function to decide where to place
additional sensors or plan the trajectory of an ocean drifter. Overall,
the developed model is important for monitoring general ocean health,
and the techniques described can be used for other ocean properties.
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Appendix A. Gaussian process regression

Gaussian process regression (GPR) is a Bayesian approach which
can estimate smooth nonlinear functions and provide an uncertainty
measurement for a given prediction. Unlike optimal interpolation or
objective mapping, GPR does not require background information to
create the data correlation matrix. One downside of using GPR is that
the matrix inversion can become slow for large numbers of input points.
However, GPR is very successful for problems with a low number of
input points. Furthermore, unlike with other machine learning tech-
niques, the hyperparameters of the model, specifically those of the
kernel, have an intuitive physical meaning and can be set according
to properties of the system.

A.1. Single fidelity

In ordinary GPR, the mean and variance are predicted using the ker-
nel, K, which relates all of the available data points [51]. Specifically,
the mean prediction is

f, =m(X,) + K(X,, )[K(X, X) + o211 (y - m(X)) (A1)
and the variance is
cov(t,) = K(X,, X,) — K(X,, X)[K(X,X) +c*IT'K(X, X,) (A.2)

For our application, the mean function m(X,) is explicitly set to be the
spatial mean (Fig. A.15) of the available satellite data.
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A.2. Hyperparameter selection

For the kernel, we use the radial basis function (RBF) with auto-
matic relevance determination as the covariance function.

cov(f (xp), £ (Xq)) = k(Xp,Xg) = o‘?. * exp(—%(xq -xp) 0(xg —x,)  (A3)

The signal variance o, and characteristic lengthscales © are hyperpa-
rameters of the model. The characteristic lengthscale represents how
far apart two points need to be for their function values to become
uncorrelated. The inverse of the lengthscale represents how relevant
a given feature is. The automatic relevance determination chooses
different characteristic lengthscales for each input to determine the
relevant inputs. As such, there are three characteristic lengthscales: one
for the input longitude, one for the input latitude, and one for the input
time. The noise variance, o,, is not a parameter of the kernel, but it can
also be considered one of the hyperparameters of the whole system.
This parameter assumes that we know the uncertainty of the sensors.
The hyperparameters are typically found by optimizing the marginal
log likelihood:

log p(y| X) = —%yT(K +o2D)y - % log |K +o21| — g log 27 (0]
A.2.1. Multi-fidelity Gaussian process regression

GPR can be enhanced if higher-fidelity measurements become avail-
able. In the case of SST, buoy data have lower uncertainty than satellite
data, and it can be incorporated through a recursive multi-fidelity
Gaussian process regression scheme. Given s levels of fidelity, the
model with the lowest fidelity is denoted with xy, y;, f,;, and the model
with the highest fidelity is denoted with x, y,, f,, [52]. The prediction
for the model with the lowest fidelity follows the Gaussian process
regression steps from Egs. (A.1) and (A.2)

f'l(x*):K(X*,Xl)[K(Xl,Xl)+6n11]_lyl, (A.5)
with covariance

cou(f)) = K(X,, X,) - K(X,, X)IK(X;, X)) + 0,, [1T'K(X|, X,).  (A.6)
Each following model has the form

fx)=p_f_ +5 t=2,...,s (A7)

In the case of satellite and buoy data, there are only two levels of
fidelity, so the prediction for the highest level of fidelity, s = 2, can
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Table B.2
Effect of memory length scale on first PCA coefficient.

Memory Stride Point A

MNACC MSE MAE
5 days 1 0.9082 0.3042 0.4301
10 days 1 0.9359 0.3201 0.4582
10 days 2 0.9204 0.3600 0.4728
14 days 2 0.9246 0.3623 0.4823
20 days 1 0.9563 0.2333 0.3796
30 days 3 0.9460 0.3134 0.4505
100 days 4 0.9558 0.2250 0.3624
Memory Stride Point B

MNACC MSE MAE
5 days 1 0.8975 0.3156 0.4393
10 days 1 0.9293 0.1809 0.3317
10 days 2 0.9061 0.2800 0.4161
14 days 2 0.9273 0.2166 0.3597
20 days 1 0.9471 0.1941 0.3538
30 days 3 0.9367 0.3094 0.4347
100 days 4 0.9501 0.1952 0.3538
Memory Stride Point C

MNACC MSE MAE
5 days 1 0.8848 0.4047 0.4926
10 days 1 0.9026 0.3235 0.4242
10 days 2 0.8950 0.3362 0.4513
14 days 2 0.9090 0.3684 0.4535
20 days 1 0.9421 0.1593 0.2893
30 days 3 0.9281 0.2360 0.3611
100 days 4 0.9448 0.1779 0.3124

be computed with the following equation

£(x,) = pf | (x,) + 4y + K(X,, X)[K (X, Xp) + 0,0 117 (y — pf1 (%)) — pg)-
(A.8)

Its corresponding covariance is

cov(fy) = pPeov@®)+K(X,, X,)-K(X,, Xo)[K(Xy, X))+0,,117' K(X,, X,),
(A.9)

p and u, are hyperparameters that are different for each level of
fidelity. Like o, and 6 of the covariance function, p and u, can be
chosen through maximum likelihood estimation or other optimization
techniques. We use the Emukit [53] Python package, which builds on
the GPy Python package [54], to build the multi-fidelity model.

Appendix B. Neural network hyperparameter tuning

To identify the optimal hyperparameters of the neural networks, a
grid search is performed with the goal of minimizing different errors.
The hyperparameters for which tuning was most important and most
interesting were the ones associated with the memory of the neural net-
work. Results from the numerical experiments are listed in Tables B.2
and B.3.

Appendix C. Open research

The Finite Volume Community Ocean Model (FVCOM) data are
available from the The Northeast Coastal Ocean Forecast System
(NECOFS): http://fvcom.smast.umassd.edu/necofs/. The Moderate-
resolution Imaging Spectroradiometer (MODIS) SST data come from
the NASA EOSDIS Physical Oceanography Distributed Active Archive
Center (PO.DAAC) at the Jet Propulsion Laboratory, in Pasadena, CA
(https://doi.org/10.5067/MODST-1D4N4). The MWRA measurements
are accessible at https://www.mwra.com/harbor/html/wq_data.htm.
The temporal convolutional network was built with Tensorflow, and
the multi-fidelity Gaussian process regression was implemented with
Emukit.
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Table B.3
Effect of memory length scale on second PCA coefficient.
Memory Stride Point A
MNACC MSE MAE
5 days 1 0.4245 0.8236 0.6429
10 days 1 0.4595 0.8002 0.6196
10 days 2 0.1850 0.9724 0.6989
14 days 2 —-0.0740 1.0125 0.7100
20 days 1 0.4566 0.7854 0.6441
30 days 3 0.3747 0.9471 0.6991
100 days 4 0.5764 0.6808 0.5928
Memory Stride Point B
MNACC MSE MAE
5 days 1 0.1812 0.7778 0.5944
10 days 1 0.0504 0.7956 0.5959
10 days 2 0.1769 0.7714 0.5810
14 days 2 0.1951 0.7725 0.5917
20 days 1 0.3595 0.7923 0.6144
30 days 3 0.2663 0.7673 0.5971
100 days 4 0.4509 0.6761 0.5656
Memory Stride Point C
MNACC MSE MAE
5 days 1 0.2313 0.7066 0.6090
10 days 1 0.4155 0.6843 0.6137
10 days 2 0.2484 0.6954 0.6106
14 days 2 0.4093 0.8342 0.6819
20 days 1 0.4550 0.6686 0.6102
30 days 3 0.4212 0.7193 0.6288
100 days 4 0.4508 0.6935 0.6105
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