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ABSTRACT

The design of marine structures involves many
computationally intensive simulations in order to estimate
quantities important for structural performance and
safety. In many cases, high fidelity simulations are
especially expensive to perform, but we may have access
to relatively low fidelity data or simulations. While
active search techniques can optimize selection of high
fidelity experimental designs, multi-fidelity active search
techniques can additionally leverage low fidelity data
to further improve design of a limited high fidelity
budget. We demonstrate multi-fidelity active search on
a ship-wavegroup problem based on the Large Amplitude
Motions Program, and show that low fidelity data
can improve experimental design and tail matching in
recovered vertical bending moment pdfs.

Keywords: Nonlinear ship dynamics and loads; heavy
tails and extreme events; Gaussian process regression;
wavegroups; reduced-order modeling; Karhunen-Loeve
expansion; optimal experimental design; active search;
multi-fidelity modeling.

INTRODUCTION

The design process for marine structures relies
extensively on structural simulations in order to estimate
both performance characteristics [Naess and Moan, 2013]]
and safety characteristics [Belenky et al., 2016,
Belenky et al., 2018]]. One important quantity to model is
the vertical bending moment (VBM) [Sapsis et al., 2020,
Sapsis et al., 2021,  Belenky et al., 2021], = which is
important for both structural stability and fatigue
lifetimes. While high fidelity simulations that accurately
resolve the VBM are expensive to evaluate, lower fidelity
simulations are much cheaper.

Gaussian process regression can be used to form
surrogate models of black box functions from known
data. Furthermore, data from sources of varying levels
of fidelity can be combined to form more accurate
models. It is be computationally expensive to obtain

data from high fidelity models, and low fidelity models
are not sufficiently accurate. As such, it is necessary to
find optimal sampling techniques so that each additional
sample provides the most useful information to the model.
Acquisition functions can be optimized to choose the
next best point to sample for a single-fidelity model.
The goal of this project is to use optimal sampling
to build better multi-fidelity models and intelligently
minimize acquisition functions to optimally choose the
level of fidelity of the data from which a new point
is taken from. Combining multi-fidelity modeling with
optimal sampling will increase the accuracy of the
surrogate model while decreasing the computational cost
of building the model. The aforementioned techniques are
demonstrated on theoretical systems as well as on a more
realistic setup involving the vertical bending moment
distribution for a ship in random head seas.

SHIP STRUCTURAL MODELING

We employ the Large Amplitude Motions Program
(LAMP version 4.0.5) to characterize marine vessel
hydrodynamics and structural responses. LAMP is
a numerical solver that computes 3-D potential flow
solution of the wave-body interaction problem in order
to calculate the time-domain motions and loading of
floating bodies [Shin et al., 2003|] [Lin et al., 2007b|]
[Lin et al., 2007a]] [Lin et al., 2010]. We follow Guth
and Sapsis [Guth and Sapsis, Jpdf] for the model
construction—here we briefly discuss the elements of the
model required to interface with the multi-fidelity active
search.

Representation of Sea State

The LAMP software simulates the motions and
dynamics of a vessel as it passes along a specified
trajectory through a specified sea state.  For our
work, we use the ONR Topside series flared variant
geometry traveling with constant linear velocity through
long crested (unidirectional) head seas with heading



180.0°.  The Froude—Krylov forces (hydrodynamic
pressure force) induce a vertical bending moment (VBM),
whose distribution previous works have found to have an
important asymmetry [[Sapsis, 2020],

When setting the design parameters for each
simulation run, our primary area of interest is in
specifying the sea state. In general, the sea surface
elevation x(&,7) is a stochastic process, which we assume
to be zero mean, statistically stationary, and with Gaussian
statistics.

Following [Guth and Sapsis, Jpdf], we use
the JONSWAP spectrum [Hasselmann et al., 1973] to
describe the time series x(§ = 0,¢) at a fixed spatial
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where constants are
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and F is the wind fetch. We choose o = 0.06 and
modal period 7, = 10s (together implying significant
wave height of H; = 13.2m). The procedure described
may be generalized to other wave spectra without change.

Each simulated experimental run requires
a distinct realization of this random process
on a finite interval [0,7] [Sclavounos, 2012}

Anastopoulos et al., 2016l /Anastopoulos and Spyrou, 2016].SupP7a.

We employ the Karhunen-Loeve (KL) theorem

[Karhunen, 1947, Loeve, 1944|:

Theorem 1 (Karhunen Loeve) Consider the stochastic
process x(t) which is zero mean and square integrable on
the probability space (Q,.%,P). Define the covariance
function

Kyx(s,8) = E [x(s)x(t)], (2)

with corresponding integral operator over the interval
[0,7],

T
T, 0(1) = /0 K(t.5)0(0)ds, t€[0.T]. ()

Then by Mercer’s Theorem for every interval
[0,T] the operator Tx, has an orthonormal basis of

eigenvectors {é;r(t)} and corresponding eigenvalues
{Ai}. Moreover, the coefficients

a= [ xer @

are centered orthogonal random variables:
Eloyatj] =0 for i# j and Var(eg) =E[Z}] = 4. (5)

Furthermore, we can expand the random process x(t) as

x(t) = i (Xié\,‘j(t), te [O,T]. (6)
i=1

In summary, the eigenvectors of the spatial
covariance matrix of the sea surface form an orthonormal
basis. The decomposition of x(¢) onto this basis produces
a set of centered, orthogonal (in the random sense)
coefficients. In particular, we can change back and forth
between the function representation x(¢),7 € [0, T] and the
coefficients representation ¢;,i = 1,2, ....

We truncate the KL expansion in equation (6]
at a finite number of modes, n. In this way, we may
represent the stochastic process on the interval [0,T]
as an n-dimensional vector & of KL coefficients, each
component of which is an orthogonal random variable
with variance A;. It is rhis design vector that we optimize
over using the techniques discussed below.

Finally, we touch on the multi-fidelity
represention. Because we introduced a truncation cutoff
n, it is natural that we expect a lower choice of n to
correspond to samples that are less faithful to the original
stochastic process. This suggest that we may choose
two different cut-offs, ny,,, and Mhigh> corresponding to
the low fidelity model and high fidelity model described
For this work, drawing on experience with the
results from [Guth and Sapsis, Jpdf], we use Mhigh =
2—3and nygy = 2.

We also briefly note that while the KL
reconstruction defines the sea surface elevation at & =
0,t € [0,T], we require the sea surface elevation
on a wider spatial and temporal interval, both to
accommodate the trajectory of the vessel, and for
initializing LAMP’s numerics. We use the stochastic
preluding technique described in [|Guth and Sapsis, Jpdf]
to extend the wavegroup smoothly backwards (and
forwards) in time in such as way that the prelude has
statistics consistent with the original stochastic process.
Additionally, we use the deep water dispersion relation

® = \/gk (7)

in order to express the time series at £ = 0 as a
superposition of traveling monochromatic waves.



Representation of structural dynamics

As LAMP models the structural response of the
vessel passing through the prescribed wavegroup, the
software records a number of kinematic and dynamic
quantities as a time series. We choose the vessel Vertical
Bending Moment (VBM) as a representative quantity of
interest, as previous works have found that the steady
state distribution of VBM has an important asymmetry
[Sapsis, 2020].

An important obstacle we encounter is that the
VBM is a time series, not a scalar quantity. In order
to fit the output into the optimal experimental design
framework, we first represent the time series as a low
dimensional vector, and then handle each component
of the vector separately. Specifically, we employ the
following KL representation for the VBM:

Nout

My(tla) = Y Qi(a)fiir (1), t€[0,T). (8)
i=1

where Q;(a) are the KL coefficients which are functions
of the excitation wavegroup and fi;7(f) are the VBM
KL modes. We represent each Q;(cx) as a separate
output component. For our presented results, we choose
now = 6. We generate both low and high fidelity data
by varying the wavegroup parameter n. Of course, in a
more realistic setup the high fidelity simulation will not be
obtained from a reduced order model, but rather through
an experiment or a CFD simulation.

MULTI FIDELITY ACTIVE SEARCH

Gaussian Process Regression

Gaussian process regression can be used
to model systems by making a prediction for the
posterior based on the prior and the likelihood
[Rasmussen and Williams, 2006]]. The joint distribution
of the observed values and the expected values of the
model under the prior is

K(X,X K(X, X,

Y o, | SR EEED )

; K(X..X) K(X.X.)
£.|X,y,X. ~ N(£,,cov(f,)). (10)

For economy of space, we abbreviate the kernel
matrices K with the data matrix subscripts. The mean
prediction is

f(x.) =K. [K+0,0] "y (11)
and the covariance of the posterior is
cov(f) = K(X,,X,) — K. [K+0,/] 'KI.  (12)

The covariance function is taken as the
radial basis function (RBF) with automatic relevance
determination. oy and 6 are hyperparameters which
represent the signal variance and characteristic length
scales.

k(xp,Xq) = cov(f(xp), f(Xq))

1
= sz-exp <—2(xq —xp)" 0(xq —xp)> . (13)

The hyperparameters for the covariance function are
chosen through maximum likelihood estimation.

Multi-Fidelity Modeling

Given s levels of fidelity, the model with
the lowest fidelity is denoted by xp,y;,f.;, and the
model with the highest fidelity is denoted by xg, ys,f*s
[Perdikaris et al., 2015]]. The prediction for the model
with the lowest fidelity follows the Gaussian process
regression steps above

fi(x.) =K [Ki1 + 0] 'y
with covariance
COV&‘I) =K. — Ky [Kll + Gn1[]7]K1*~

Each following model is of the form

ft(X*):ptflftfl'i—at [:2,...,S. (14)

In this project, we consider only two levels of
fidelity, so the prediction for the highest level of fidelity,
s = 2, can be computed using the following equation

The corresponding covariance is
cov(fz) = pzcov(f'l) + K, — K*Q[KKzz + 0',,21} _1K2*

where p and u, are hyperparameters that are different for
each level of fidelity. Like the oy and 6 of the covariance
function, p and y; can be chosen through maximum
likelihood estimation or other optimization techniques.
Optimal Sampling

The maximum response is evaluated at a
set number of initial. points. Then, the following
points are chosen sequentially through optimization
of a chosen acquisition function. In general,
acquisition functions optimize the selection of individual
samples to globally reduce the uncertainty of the
model [Blanchard and Sapsis, 2021a]. Commonly used
acquisition functions can be modified to give more weight
to points that are more ‘“relevant.” Relevant points
either have a larger impact on the output or have a

fo(x,) = pfi (x.) + g + Ko [Kao + 6,01] ' (y — pi (x2) — a).



higher probability of occurrence. These output-weighted
acquisition functions make use of the likelihood ratio w(x)

_ Px(x)
W) = L )

which significantly improves the convergence rate

; 15)

bringing it close to the optimal [Sapsis and Blanchard, 2022].

In particular, output-weighted sampling is valuable in
modeling extreme events because it uses information
about the output space from previous observations
to decide where to perform future samples. Under
these conditions, extreme events are more likely to
be found because future samples are chosen based on
their impact on the output of the black box function.
[Blanchard and Sapsis, 2021b]]

For the acquisition function in this work, we
highlight the choice of likelihood weighted uncertainty
sampling:

ays—pw (x) = Gz(x)w(x). (16)

Fidelity-Weighted Cost Function

Given that the higher fidelity function is significantly
more computationally expensive than the lower fidelity
function, the acquisition function can be adjusted to
account for the cost of each level of fidelity. By assigning
more weight to the higher fidelity model, the acquisition
function will tend to choose more points from the lower
fidelity function to build the model. The ratio between
the cost of the low and high fidelity functions needs to
be reasonable to avoid overfitting. The ratio between
the additional cost and the original acquisition function
also needs to be balanced to make sure that both parts
of the total objective are taken into account during the
minimization.
The cost-ratio penalty term can be expressed as

b
Cio= —(m +1)+n
by
b
Chi = —ni+(na+1)
by
1
J=a(x)+ C,.
Niter

where b; and b, tunable parameters that control the
relative costs of sampling from the low fidelity and high
fidelity models, respectively. The model selects between
sampling from the low and high fidelity function by
comparing the optimum value of J for each choice of the
penalty term (Cj, or Cp;).

We can summarize the active search algorithm as
the following:

« Initialize f> on initial datasets 2 = {X;,yi}io—fi»
Dy = {Xi,Yi}nisi

o Foreach step n € [1,..., Ry

1. Minimize objective function

low-fidelity model;

J given

Jio—fi :Pe]gl](";fla@h”l =n;+1)

[\

. Minimize acquisition function J given
high-fidelity model;

Jhigi = minJ(X; fo, D1, Do,np = np + 1)
xeZ
3. Choose model f; in {fi, >} that minimizes J
to select next best point X,

Xn 1 = argminJ (x; fi, 71, Z»)
xeZ

4. Evaluate respective simulation f; at X,

Yn+1 = ﬁ'(xn+l)

5. Augment chosen dataset: 9 = 9; U
{Xnt1,Vn41}
6. Update  surrogate model f>  using

multi-fidelity Gaussian process regression

For the marine structure example, we choose
initial data sets that include 47 = 4 initial high fidelity
points and / € {0,200} initial low fidelity points. Further,
we choose a cost-ratio penalty so that only additional high
fidelity points are selected.

Acquisition Functions with Vector Output

For the ship structure problem described above,
we note an additional complication: to reconstruct
the VBM, we estimate n,,, distinct mode coefficients.
While this representation could be considered in terms
of a vector valued Gaussian process, it is simpler to
consider a set of n,, distinct scalar Gaussian processes.
In particular, the KL construction leads to Gaussian
posteriors that are nearly uncorrelated.

How can we use the previously described
algorithm for picking sample points when we have ny,;
distinct Gaussian processes we would like to ‘jointly’
optimize? For this work, we use a simple Round Robin
strategy: at step i, we choose the j* mode to optimize,
and we relate i and j using the relation

Jj=1imod n,y. (17

In other words, each black box evaluation
provides a sample for the Gaussian process surrogate
associated with each output mode. While there are more
sophisticated strategies for applying scalar acquisition
function to vector functions, we found that the round robin
performed adequately for this marine structural problem.



Suitability for Marine Dynamics

Before applying this multi-fidelity framework
for actively sampled Gaussian process regression, we take
a moment to check whether Gaussian process modeling
(kriging) is a good fit for this problem area. There are
two main requirements for using Gaussian processes, and
another requirement for multi fidelity.

First, Gaussian process regression is best suited
for low dimension problems. Capping the dimension
of the input space below n ~ 10 is an important
topological requirement. For this problem, the wavegroup
parametrization is very low dimensional-n € {2,3}.

Second, kernel matrix inversion for Gaussian
processes scales algorithmically with the third power of
the sample size. This makes Gaussian process regression
a poor choice for many big data applications negmpies >
1000. For this problem, we always restrict our attention
to Gaussian process models with less than 625 samples.
Indeed, our goal with active sampling is to minimize the
training set size.

Finally, multi fidelity is a useful framework
for data integration when the low fidelity function and
the high fidelity function are highly correlated, so that
relationships learned by the low fidelity model can be
transferred to the high fidelity model. In the two scenarios
we present below (restricted inputs and noisy inputs),
relationship partially holds. However, the significant
intrinsic noise in this problem may be an important
limitation.

DEMONSTRATION AND RESULTS

For this work, we apply the multi-fidelity active
search approach described above to the marine structure
problem. Our design vector describes the coefficients of
parametrized wavegroups with 7 = 60. We choose s = 2
levels of fidelity—a high fidelity model we assume to be
‘true,” and a low fidelity model.

For our high fidelity model, we choose to
focus on two values of Mhighs 2 low dimensional
example with Mhigh = 2 and a moderate dimensional
example with npi.p, = 3. We note that Guth and
Sapsis [Guth and Sapsis, Jpdf] found that high = 3
was generally sufficient to recover accurate steady state
statistics. For each problem, we construct a high fidelity
“black box” function by collecting 625 wavegroups and
associated VBM time series. The wavegroup coefficient
vectors & are constructed by Latin Hypercube Sampling
from a box domain with radius z* \/Z where 4, is the KL
eigenvalue associated with component i and z* = 4.5 is
cutoff z-score that controls how far into the distribution
tails sampling takes place.

For our low fidelity model, we use different
wavegroup models, simulated using the same LAMP

code. In one case, we use noisy wavegroups, with
n fixed coefficients and higher coefficients allowed to
vary randomly. In the other case, we use truncated
wavegroups, where one of the n fixed coefficients was
truncated (set to 0).

For active search, we use the likelihood
weighted uncertainty sampling from equation (I6).
This was implemented using both the Python package
[Paleyes et al., 2019], as well as the active search package
GPSEARCH [Blanchard, 2021].

In the following plots, the thick black line
labeled ‘true’ corresponds to the distribution generated
by 10° samples from the high fidelity black box. Thus,
the ‘true’ pdf differs slightly between high fidelity models
with Mhigh = 2 and Mhigh = 3.

For each problem, we initialized the
optimization with & = 4 high fidelity samples and [/ €
{0,200} low fidelity samples. This allows us to estimate
the effect of low fidelity data on the sample selection
and pdf reconstruction. We plotted the reconstructed pdf
for various numbers of additional high fidelity samples,
where k is the sum of the 4 = 4 initial samples and the
sampled selected via active search. Each reconstructed
pdf is generated by 10° samples. Due to our particular
interest in extreme values of the VBM, we principally
evaluate the accuracy of the pdf reconstruction by
examining the tail mass.

Low Dimensional Problem (n;,;, = 2)

We chose ny ;o = 2 as a simple demonstration.
For this case, the low fidelity model is generated by
considering n = 6 dimensional wavegroups. From the
6-dimensional vector of coefficients & we vary only the
first two, while the other four are chosen randomly.
Because only two input components are controlled, the
low fidelity model is a noisier version of the high
fidelity model, with somewhat heteroskedastistic noise. In
particular, the form of the noise causes the low fidelity
model to generally overestimate the VBM.

In figure [T] we show the recovery of the VBM
pdf both without any low fidelity samples, as well as with
! =100 and ! = 200 low fidelity samples. That is, for
the vessel VBM M,, we show a log scale plot of the
probability density function fj,(s). We focus on the tails
of this distribution, which for the true model (black, bold)
decay faster than Gaussian.

First, for very small amounts of high fidelity
data, the overestimate of the tail spread for [ = 0 is greater
than for to [ = 100 and / = 200. This is surprising,
because the (true) low fidelity model has heavier tails.
This suggests that the multi-fidelity combination is able
to model the tails better than high fidelity data alone.

Second, for larger amounts of high fidelity data,
the / = 0 and [/ = 100 pdfs converge in the tails faster.



One possible explanation for this behavior is that, as
the ratio of low fidelity to high fidelity data increases,
the hyperparameter tuning necessary associated with the
high-low delta kernel are more difficult.

reconstructed pdf —n=2,1=0
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Figure 1: Reconstruction of VBM pdf, for n = 2 high
fidelity model and (top) [ = 0, (middle) / = 100, and
(bottom) / = 200 noisy low fidelity points. Colored lines
correspond to increasing number of sampled high fidelity
points.

In figure 2] we show the locations of the initial
low fidelity samples (red) and the actively sampled high
fidelity samples (blue).

Moderate Dimensional Problem (n;,;, = 3)

For the ny;g, = 3 case, we consider two different
low fidelity models. The first low fidelity model (middle
figure [3) is constructed as previously, corresponding to a
wavegroup with random higher order components.

Figure 2: Comparison of sample locations for (Left) only
high fidelity points and (Right) I = 200 red low fidelity
points.

The second low fidelity model (bottom figure [3)
is constructed by truncating the third component of @&, and
feeding the resulting n = 2 dimensional coefficient vector
into the n = 2 black box. Unlike the ‘noisy’ low fidelity
model, this model is low fidelity because it ignores one
dimension of the input.

We note that for very small numbers of
high fidelity samples, the noisy low fidelity model
overestimates the variance of the reconstructed pdf. This
is not hard to understand—in the absence of better data, the
model estimates the true (high fidelity) spread by the low
fidelity spread, which was designed to be noisy.

For all cases (high fidelity only, noisy low
fidelity, and truncated low fidelity), the reconstructed
pdf matches the broad features, such as the asymmetric
shoulder, quickly (i.e. with less than 12 high fidelity
samples). We see that in the noisy low fidelity case,
it appears to converge slightly slower. This can be
a result of the overfitting problem mentioned supra.
Alternatively, when the low fidelity model contains more
(noisy) features, it may be more challenging for the multi
fidelity model to learn the right balance between between
the low fidelity and delta kernels.

We finally note that the truncated low fidelity
model appears to best learn the distribution tails—thought
only after an early transient while it identifies the way
that the low and high fidelity samples treat the truncated
dimension differently. For this problem, however, the
ultimate difference is not that great. This is likely because,
for this problem, the pdf tails are driven by ‘extreme’ data
points near the boundary of the sample domain, which
are sharply limited by the total number of high fidelity
samples.
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Figure 3: Reconstruction of VBM pdf, for n = 3 high
fidelity model and (top) [ = 0 low fidelity points, (middle)
I =200 noisy low fidelity points and (bottom) truncated
low fidelity points. Colored lines correspond to increasing
number of sampled high fidelity points.

Learning Plots

We quantify the statistical accuracy of the
surrogate model by computing an error metric between
the reconstructed pdf and the true pdf. Because
different error metrics emphasize different aspects of the
distribution, we present two: the mean absolute error
(MAE, /1 norm)and the mean absolute log error (MALE,

log I norm):
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Figure 4: Error curves showing the relationship between
size of training set and the reconstructed VBM pdf and
the true pdf, using truncated low fidelity data. (Top) Mean
absolute error. (Bottom) Mean absolute log error.

e = [ 1 6) = Fio)
&2= [ 1o f1) () ~Tog s (s)

We note that for numerical reasons, we must
choose a cutoff scale for &, which controls how far into
the tail is considered. We used a cutoff corresponding to
fu(s) ~1x 10713,

Figure [] presents learning curves for different
sized low fidelity sets (/ € {100,300}) and different values
of p (p € {0.1,0.5,1.0}).

We note that rho = 1.0 behaves very differently
when considering MAE (which preferentially detects
convergence near the distribution mode) as when



considering MALE (which preferentially detects
convergence near the tails). This is likely due to a large
value of p suppressing the information gained from new
high fidelity samples.

We also note that there is an range where the
addition of low fidelity data greatly increases accuracy.
This improvement is seen both in comparing multi
fidelity active search to single fidelity active search (black
dot-dashed line), and when comparing small low fidelity
sets to larger low fidelity sets (colored continuous lines vs
dotted lines).

We interpret this finding to mean that the multi
fidelity is most useful when actively sampling in the
very-low data regime. As the density of data points
increases, the advantage offered by the low fidelity data
begins to decrease.

CONCLUSIONS

In this work, we described how to implement a
multi-fidelity Gaussian process framework for an active
search problem in the context of ship structural response
under random waves. Specifically, we applied this
multi-fidelity active search to a model in marine
structural dynamics, where a low fidelity approximate
solution corresponded to either noisy simulation data
(corresponding to a noisy wavegroup) or truncated
fidelity simulation data (corresponding to a low fidelity
wavegroup). We found that in certain cases, the
low fidelity data meaningfully improves the recovered
pdf tails. However, in other circumstances there is
no improvement, or even degraded recovery. One
example is situations where the low-fidelity data is
over represented and the low-fidelity model contains
additional noise features. Because the efficacy of the
multi fidelity approach appears to have some dependence
on the relationship between low fidelity and high fidelity
models, further work should investigate other low-fidelity
high-fidelity model pairs beyond the low/high-fidelity
wavegroup parametrization.
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